CDI IIC EDIICATION

		GL LU3 L	DUCATION	
Dat Tim				PHYSICS
	'ks :			1110100
		UNITS AND	MEASUREMENTS	
		Single Cor	rect Answer Type	
1.	· ·		on their wavelength λ , the demensions gives the relation $c) v^2 \propto g\lambda$	•
2.	In a vernier callipers, (1) divisions of the mai	one main scale division is in scale. The least count ($x \ cm$ and n division of the vin cm) of the callipers is	vernier scale coincide with $(n -$
	a) $\left(\frac{n-1}{n}\right)x$	b) $\frac{nx}{(n-1)}$	c) $\frac{x}{n}$	d) $\frac{x}{(n-1)}$
3.	What are dimensions	of emf of battery?		attery, $\varepsilon = \text{emf of the battery}$.
4.	a) $[M^0L^0T^{-2}A^{-2}]$ The dimensions of uni a) $M^{-2}L^2T^{-2}$	versal gravitational consib) $M^{-1}L^3T^{-2}$	c) $[M^2L^0T^{-3}A^0]$ tant are c) $ML^{-1}T^{-2}$	d) $[ML^2T^{-3}A^{-1}]$ d) ML^2T^{-2}
5.	The dimension of $\frac{1}{\sqrt{\varepsilon_0 \mu}}$	=	7	.,
6.	a) Velocity $[ML^2T^{-3}]$ is the dimer	b) Time	c) Capacitance	d) Distance
	a) Work	b) Power	c) Force	d) Momentum
7.		-	0.4742). convert crane into	
_	a) 0.170474 m ³	b) 17.0474m ³	c) 0.00170474m ³	d) 1704.74m ³
8.	What are the units of R a) $C^2N^{-1}m^{-2}$	$K = 1/4\pi\varepsilon_0$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 77 111
0			c) Nm^2C^2	d) Unitless
9.			vity (g) and pressure (p) are	e taken as the fundamental
	quantities, then the distance $c^2g^0p^{-2}$	mension of gravitational b) $c^0 g^2 p^{-1}$	constant is c) cg^3p^{-2}	4) a=1 a0a=1
10		factor of tangent galvanor	, , ,	d) $c^{-1}g^0p^{-1}$
10.	a) <i>Ampere</i>	b) <i>Gauss</i>	c) Radian	d) None of these
11			-	-
11,		0	o's law has the following din	
	a) $C^{-2}Nm^2$	b) $C^2N^{-1}m^{-2}$	c) C^2Nm^2	d) $C^{-2}N^{-1}m^{-2}$
12.			-	or of 6 kW with tolerance 100%
	-	arallel combination is nea	-	
	a) 10%	b) 20%	c) 30%	d) 40%
13.	-		cous damping force acting or	n it is proportional to the
	<u>-</u>	ion of constant of propor	•	12 MX 0m=1
1 1	a) $ML^{-1}T^{-1}$	b) <i>MLT</i> ⁻¹	c) M^0LT^{-1}	d) $ML^{0}T^{-1}$
14.	If $v = \frac{\pi}{t} + Bt^2 + Ct^3$ v	vhere v is velocity, t is tin	ne and A , B and C are consta	nts, then the dimensional
	formula of B is a) $[M^0LT^0]$	b) [ML ⁰ T ⁰]	c) [M ⁰ L ⁰ T]	d) [M ⁰ LT ⁻³]
15.	The specific resistance	e $ ho$ of a circular wire of ra	dius r . Resistance \emph{R} and and	l length l is given by $\rho = \frac{\pi r^2 R}{l}$.
				percentage error in $ ho$ is nearly
	a) 7%	b) 9%	c) 13%	d) 20%

16.	The fundamental physica and angular momentum	al quantities that have same are	e dimensions in the dimensi	onal formulae of torque
	a) Mass, time	b) Time, length	c) Mass, length	d) Time, mole
17.	In an experiment, to mea	sure the height of a bridge	by dropping stone into wat	er underneath, if the error
	in measurement of time	is 0.1s at the end of 2s, then	the error in estimation of	height of bridge will be
	a) 0.49 <i>m</i>	b) 0.98 m	c) 1.96 m	d) 2.12 <i>m</i>
18.	The radius of the proton	is about 10^{-15} m. The radiu	s of the observable univers	e is 10^{26} m. identify the
	=	ay between these two extre		J
	a) 10 ²¹ m	b) 10 ⁶ m	c) 10 ⁻⁶ m	d) 10 ⁰ m
19.	Which of the following p	•	-,	-,
	a) Pressure-Barometer		b) Relative density-Pyron	neter
	c) Temperature-Thermo	meter	d) Earthquake-Seismogra	
20.		dy on Kelvin scale is found t	, ,	•
20.	thermometer, it is found		o be it in when it is measur	ea by a ramemier
	a) 301.25	b) 574.25	c) 313	d) 40
21		0.1) cm and breadth (2 \pm 0	•	-
21.			$(10 \pm 0.001) \text{ cm}^2$	$\frac{10}{10}$ (10 ± 1) cm ²
	a) (10 ± 0.2) cm ²	b) $(10 \pm 0.01) \text{ cm}^2$	c) (10 ± 0.001) till	d) (10 ± 1) cm
22.	One yard in SI units is eq	ual		
	a) 1,9144 metre	b) 0.9144 metre	c) 0.09144 kilometre	d) 1.0936 kilometre
23.	•	a for Boltzmann's constant		
	a) $[ML^2T^{-2}\theta^{-1}]$	b) $[ML^2T^{-2}]$	c) $[ML^0T^{-2}\theta^{-1}]$	d) $[ML^{-2}T^{-1}\theta^{-1}]$
24.	$Erg - m^{-1}$ can be the u		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	71
	a) Force	b) Momentum	c) Power	d) Acceleration
25.	•	s have the same dimension		u) Meceleration
	a) Couple of force and w		b) Force and power	
	c) Latent heat and specif		d) Work and power	
26				k is given by relation
20.		where c is a dimensionless c		
	a) $1/2$, $1/2$	b) -1/2, -1/2	c) 1/2, -1/2	d) -1/2, 1/2
27				, , ,
۷,.		he relation $U = \frac{ky}{y^2 + a^2}$ where		energy, y represents the
		esents the maximum displa	cement <i>ie</i> , amplitude?	
	a) m s $^{-1}$	b) m s	c) J m	d) $J s^{-1}$
28.	The pair having the same	e dimensions is		
	a) Angular momentum, v	work	b) Work, torque	
	c) Potential energy, linea	ar momentum	d) Kinetic energy, velocity	У
29.	Which one has the dimen	nsions different from the re	maining three	
	a) Power	b) Work	c) Torque	d) Energy
30.	Planck's constant has the	e dimensions (unit) of		
	a) Energy	b) Linear momentum	c) Work	d) Angular momentum
31.	Dimension of <i>R</i> is			
	a) ML^2T^{-1}	b) $ML^2T^{-3}A^{-2}$	c) $ML^{-1}T^{-2}$	d) None of these
32.	Which of the following so	ets have different dimension	ns?	
	a) Pressure, Young's mod	dulus, Stress	b) Emf, Potential differen	ce, Electric potential
	c) Heat, Work done, Ene		d) Dipole moment, Electr	
33.	Choose the incorrect state	tement out of the following		
	a) Every measurement b	y any measuring instrumen	nt has some error	
	b) Every calculated physical quantity that is based on measured values has some error			

c) A measurement can have more accuracy but less precision and vice versa

		s different from relative er		
34.	= =	-	(100 ± 0.2) m ² . The side of	=
25	a) (10 ± 0.01) m	b) (10 ± 0.1) m	c) (10.0 ± 0.1) m	d) (10.0 ± 0.2) m
33.	Which of the following is		12σ	
	a) $\frac{v^2}{rg}$	b) $\frac{v^2g}{r}$	c) $\frac{vg}{r}$	d) v^2rg
36.	_	tional constant I — impuls	se and $M = $ mass, the dimer	ngions of GIM ² are same as
		$\frac{1}{1}$	se and $M = \text{mass, the differ}$	$\frac{1510115}{E^2}$ are same as
	that of a) Time	b) Mass	c) Length	d) Force
37	The unit of percentage err	•	c) Length	u) Porce
57.	a) Same as that of physica			
	b) Different from that of p			
	c) Percentage error is uni			
	d) Errors have got their o	wn units which are differe	nt from that of physical qua	antity measured
38.	The S.I. unit of gravitation	•		
	a) <i>J</i>	b) $J - kg^{-1}$	c) $J - kg$	d) $J - kg^{-2}$
39.	Dimensions of charge are		1 .	
	a) $M^0L^0T^{-1}A^{-1}$	b) <i>MLTA</i> ⁻¹	c) $T^{-1}A$	d) <i>TA</i>
40.	$S = A(1 - e^{-Bxt})$, where a a) $m^{-1}s^{-1}$		ement. The unit of B is c) s^{-2}	.n1
11	,	b) $m^{-2}s$	ea. The volume of such a cu	d) s^{-1}
41.	a) 216 <i>units</i>	b) 1000 units	c) 2000 units	d) 3000 units
42.	The physical quantity hav	The state of the s		aj 3000 units
	a) Resistance	mg the dimensions [1. 2	b) Resistivity	
	c) Electrical conductivity		d) Electromotive force	
43.	If $x = at + bt^2$, where x is	s the distance travelled by	the body in kilometre whil	le t is the time in second,
	then the units of b are	b) <i>km</i> – <i>s</i>	TATION	
	a) km/s	b) <i>km – s</i>	c) km/s^2	d) $km - s^2$
44.	'Torr' is the unit of	13		D =1
4 =	a) Pressure	b) Volume	c) Density	d) Flux
45.	A suitable unit for gravita a) kg - m sec ⁻¹	b) $N m^{-1}$ sec	c) $N m^2 kg^{-2}$	d) $kg m \sec^{-1}$
46	Dimensional formula for f		C) IV III KY	uj ky ili sec
10.	a) [ML ² T ⁻²]	b) [MLT ⁻²]	c) $[ML^{-1}T^{-2}]$	d) $[ML^2T^{-2}]$
47.			which a current I is flowing,	,
	formula of LI^2 is	Ü	5	
	a) $[MLT^{-2}]$		b) $[ML^2T^{-2}]$	
	c) $[M^2L^2T^{-2}]$		d) Not expressible in tern	ns of M, L, T
48.	The dimensions of electric	· = ·		_
	a) [L ² I]	b) [LI]	c) [LTI]	d) $[T^{-2}]$
49.			where g is acceleration du	e to gravity and <i>h</i> is the
	height. The values of p and		1	J) 1 1
	a) $1,\frac{1}{2}$	b) $\frac{1}{2}$, $\frac{1}{2}$	c) $\frac{1}{2}$, 1	d) 1, 1
50.	$ML^{-1}T^{-2}$ represents	<u></u>	-	
	a) Stress		b) Young's Modulus	
	c) Pressure		d) All of the above three o	quantities
51.	The unit of Wien's constant			
	a) $Wm^{-2}K^{-4}$	b) $m^{-1}K^{-1}$	c) Wm ²	d) MK

52.	The SI unit of gravitation	al potential is		
	a) J	b) Jkg ⁻¹	c) Jkg	d) Jkg ²
53.	A physical quantity is me Then which of the follow		nd to be nu where $n = \text{num}$	erical value and $u = $ unit.
	a) $n \propto u^2$	b) $n \propto u$	c) $n \propto \sqrt{u}$	d) $n \propto \frac{1}{u}$
54.	Frequency is the function	of density (ρ) , length (a)	and surface tension (T) . The	en its value is
	a) $k\rho^{1/2}a^{3/2}/\sqrt{T}$	b) $k\rho^{3/2}a^{3/2}/\sqrt{T}$	c) $k\rho^{1/2}a^{3/2}/T^{3/4}$	d) None of these
55.	The units of modulus rigi	dity are		
	a) $N-m$	b) <i>N/m</i>	c) $N - m^2$	d) N/m^2
56.	The circular divisions of s diameter of the ball is	shown screw gauge are 50.	It moves 0.5 mm on main s	scale in one rotation. The
		O 30 25 20		
	a) 2.25 mm	b) 2.20 <i>mm</i>	c) 1.20 mm	d) 1.25 mm
57.	• •	airs has same dimensions?		
	a) Current density and ch		b) Angular momentum ar	nd momentum
5 0	c) Spring constant and su	OV	d) Force and torque	
58.	The Vander Waal's equat	ion of state for real gases is	given as $\left(P + \frac{a}{V^2}\right)(V - b)$	= nRT which of the
	following terms has dime	ensions different from that	_ 	
	a) PV	b) $\frac{a}{V^2}$	c) $\frac{ab}{V^2}$	d) <i>bP</i>
59.	In the relation $p = \frac{\alpha}{\beta} e^{-\frac{\alpha z}{k \epsilon}}$	\overline{b},p is the pressure, z the dis	stance, k is Boltzmann cons	tant and θ is the
	temperature, the dimensi	·		
	a) $[M^0L^2T^0]$	b) [ML ² T]	c) [ML ⁰ T ⁻¹] I of a liquid of coefficient of	d) $[ML^2T^{-1}]$
60.			V of a liquid of coefficient of aving pressure p across its	
	a) $V = \frac{\pi p r^4}{8\eta l}$	$V = \frac{\pi \eta l}{8pr^4}$	$V = \frac{8p\eta l}{\pi r^4}$	$V = \frac{\pi p \eta}{8lr^4}$
	a) $V = \frac{8\eta l}{8\eta l}$	b) $^{-}8pr^{4}$	c) $v = \frac{1}{\pi r^4}$	d) 1 8 lr^{4}
61.	"Pascal-Second" has dim	ension of		
	a) Force		b) Energy	
	c) Pressure		d) Coefficient of viscosity	
62.	-		of capacitance and magnet	ic induction respectively. In
	MKSQ system, the dimens		2.52.22.204.003	12 52 5 - 2 5 - 2 5 4 5 4 3
6 2	a) $[M^{-3}L^{-2}T^{-2}Q^{-4}]$	b) [ML ⁻²]	c) $[M^{-3}L^{-2}Q^4T^8]$	d) $[M^{-3}L^{-2}Q^4T^4]$
63.	a) Momentum	for impulse is same as the	b) Force	
	c) Rate of change of mom	aentum	d) Torque	
64.	,			stant respectively, then the
0 1.	quantity (EL^2/M^5G^2) has			ounter especial etg, unen une
	a) Angle	b) Length	c) Mass	d) Time
65.	Unit of electric flux is	-		
	a) Vm	b) Nm/C ⁻¹	c) Vm ⁻¹	d) CNm ⁻¹
66.	Dimensions of frequency		0.0	
	a) $M^0L^{-1}T^0$	b) $M^0L^0T^{-1}$	c) M^0L^0T	d) MT^{-2}

67. Students I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table

Least count for length = 0.1 cm

Least count for time = 0.1 s

Stud	Length	Number	Total	Time
ent	of	of	time	period
	the	oscilla	for (n)	(s)
	pend	tion	oscilla	
	ulum	(n)	tions	
	(cm)		(s)	
I	64.0	8	128.0	16.0
I	64.0	4	64.0	16.0
III	20.0	4	36.0	9.0

If $E_{\rm I}$, $E_{\rm II}$ and $E_{\rm III}$ are the percentage errors in g, i. e., $\left(\frac{\Delta g}{g} \times 100\right)$ for students I, II and III, respectively a) $E_{\rm I} = 0$ b) $E_{\rm I}$ is minimum c) $E_{\rm I} = E_{\rm II}$ 68. The unit of the coefficient of viscosity in S.I. system is a) m/kg - sb) $m - s/kg^2$ c) $kg/m - s^2$ 69. The physical quantity angular momentum has the same dimensions as that of a) Work b) Force d) Planck's constant c) Momentum 70. The physical quantity having the dimensions $[M^{-1}L^{-3}A^2]$ is a) Resistance b) Resistivity c) Electrical conductivity d) Electromotive force 71. The dimensional formula of $\frac{1}{\varepsilon_0} \frac{e^2}{hc}$ is b) $[M^{-1}L^3T^2A]$ c) $[ML^3T^{-4}A^{-2}]$ a) $[M^0L^0T^0A^0]$ d) $[M^{-1}L^{-3}T^4]$ 72. In the formula, $a = 3bc^2$, a and c have dimensions of electric capacitance and magnetic induction respectively. What are dimensions of b in MKS system? a) $[M^{-3}L^{-2}T^4Q^4]$ c) $[M^{-3}T^3Q]$ d) $[M^{-3}L^2T^4Q^{-4}]$ b) $[M^{-3}T^4Q^4]$

73. A unit of area, often used in measuring land areas, is the hectare defined as 10^4 m². An open-pit coal mine consumes 75 hectares of land, down to a depth of 26m, each year. What volume of earth, in cubic kilometre, is removed in this time?

a) 0.01

b) 0.02

c) 0.03

74. If 3.8×10^{-6} is added to 4.2×10^{-5} giving due regard to significant figures, then the result will be

a) 458×10^{-5}

b) 4.6×10^{-5}

c) 4.5×10^{-5}

d) None of the above

75. Let us choose a new unit of length such that the velocity of light in vacuum is unity. If light takes 8 min and 20 sec to cover the distance between sun and earth, this distance in terms of the new unit is

a) 5

b) 50

c) 500

d) 3×10^{8}

76. If *L*, *C* and *R* denote inductance, capacitance and resistance respectively, then which of the following combination has the dimension of time?

77. In an experiment the angles are required to be measured using an instrument. 29 divisions of the main scale exactly coincide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half-a-degree (= 0.5°) then the least count of the instrument is

a) One minute

b) Half minute

c) One degree

d) Half-degree

The position of a particle at time t is given by the relation $x(t) = \left(\frac{v_0}{\alpha}\right)(1-e^{\alpha t})$, where v_0 is constant and $\alpha > 0$. The dimensions of v_0 and α are respectively

	a) $M^0L^1T^{-1}$ and T^{-1}	b) $M^0L^1T^0$ and T^{-1}	c) $M^0 L^1 T^{-1}$ and	LT^{-2} d) $M^0L^1T^{-1}$ and T
79.	•	which pair of quantities do no		
	· ·	ind angular momentum	b) Work and ene	
	c) Pressure and Youn	_		noment of inertia
80.		uantity obtained by the line	*	
	a) NC ⁻¹	b) Vm ⁻¹	c) IC ⁻¹	d) $C^2N^{-1}m^{-2}$
81.	•	rmula for the intensity of rac	, ,	,
	a) $M^1L^0T^3$	b) $M^1L^0T^{-3}$	c) $M^1L^2T^{-2}$	d) $M^1L^2T^{-3}$
82.	Two quantities A and	B have different dimensions	s. Which mathematic	al operation given below is
	physically meaningfu	l		
	a) <i>A/B</i>	b) $A + B$	c) $A - B$	d) None
83.	The percentage error	s in the measurement of a m	ass and speed are 29	% and 3% respectively. How much
	will be the maximum	error in the estimate of kine	tic energy obtained	by measuring mass and speed?
	a) 11%	b) 8%	c) 5%	d) 1%
84.	The concorde is the fa	astest airlines used for comm	nercial service. It can	cruise at 1450 mile per hour (about
	two times the speed of	of sound or in other words m	ach 2). What is it in	•
	a) 644.4m/s	b) 80 m/s	c) 40 m/s	d) None of these
85.	The dimensions of el	_		
	a) $[ML^2T^{-2}Q^{-1}]$, , ,	, ,	d) $[ML^2T^{-2}Q]$
86.		•		d with the help of a vernier calipers.
	Their values are 4.23	\pm 0.01 cm and 3.87 \pm 0.01 c	m respectively. The	thickness of the wall of the cylinder
	is			
	•	b) 0.18± 0.02 cm	•	,
87.	The velocity v (in cm)	/sec) of a particle is given in	terms of time $t(in s)$	<i>ec</i>) by the relation $v = at + \frac{b}{t+c}$; the
	dimensions of a , b and	d c are		
	a) $a = L^2, b = T, c = L^2$	LT^2	b) $a = LT^2$, $b =$	
	c) $a = LT^2, b = L, c =$	T TOLLIC EDII	d) $a = L, b = LT$	$c, c = T^2$
88.	The dimensions of kir	netic energy are	CHITOIA	
	a) $[M^2L^2T]$	b) [ML ² T]	c) $[ML^2T^{-2}]$	d) $[ML^2T^{-1}]$
89.	What is the SI unit of	permeability		
	a) <i>Henry</i> per <i>metre</i>		b) Tesla <i>metre</i> p	oer <i>ampere</i>
	c) Weber per amper		•	units are correct
90.			•	ly at rest in a given time. He uses this
			=	rcentage errors in measurement of
		ime are e_1 and e_2 respective		_
0.4	a) $e_2 - e_1$	b) $e_1 + 2e_2$	c) $e_1 + e_2$	d) $e_1 - 2e_2$
91.	Which of the followin	-	.	D 14
00	a) Millimetre	b) Angstrom	c) Fermi	d) Metre
92.		•		least count of 0.01 cm are 5 mm ×
				of the volume of the block is
02	a) 5%	b) 10%	c) 15%	d) 20%
93.	the dimensional form		omentum and gravn	cational constant respectively, then
	a) [MLT ⁻²]	b) [M ⁰ L ⁰ T]	c) $[M^0L^2T^0]$	d) Dimensionless
0.4	The dimensions of co		C) [M L I]	d) Difficusionless
94.	a) ML^2T^{-2}	uple are b) <i>MLT</i> ⁻²	c) $ML^{-1}T^{-3}$	d) $ML^{-2}T^{-2}$
95	The dimension of qua	•	CJ WIL I	uj W.L. I
,,,	a) $[A]$	b) [A ²]	c) $[A^{-1}]$	d) None of these
96	,	nula of relative density is	c) [A]	aj None di diese
		·	TION ORG	DUONE NO OFFICE STATE OF THE
G	SPLUS EDUCATION	WEB: <u>WWW.GPLUSEDUCA</u>	ATION.ORG	PHONE NO: 8583042324 Page 6

	a) ML^{-3}	b) <i>LT</i> ⁻¹	c) MLT^{-2}	d) Dimensionless
97.				n 2 1
0.0	a) $ML^{-1}T^{-2}Q^{-2}$,	c) $MLT^{-2}Q^{-1}$	d) $ML^2T^{-2}Q^{-1}$
98.	If the length of rod A is (3 rod A by	$3.25~\pm 0.01)$ cm and that of		
	a) (0.94 ± 0.00) cm	b) (0.94 ± 0.01) cm	c) (0.94 ± 0.02) cm	d) (0.94 ± 0.005) cm
99.	The length l , breadth b are	id thickness t of a block are	e measured with the help of	f a metre scale. Given $l=$
	15.12 ± 0.01 cm, $b = 10.1$	0.5 ± 0.01 cm, $t = 5.28 \pm 0.0$	1cm.	
	The percentage error in v	olume is		
	a) 0.64%	b) 0.28%	c) 0.37%	d) 0.48%
100	. The mass and volume of a	a body are found to be 500	\pm 0.05 kg and 1.00 \pm 0.05	m^3 respectively. Then the
	maximum possible perce	ntage error in its density is		
	a) 6%	b) 3%	c) 10%	d) 5%
101	· What is the dimensional f	Formula of planck's constant interesting from		
	a) $[M^0L^0T^0]$	h) [M ⁰ L ⁰ T]	c) $[M^0LT^0]$	d) [MLT ⁻¹]
102	,	,	,	,
102		of coefficient of permittivi	ty for free space (ϵ_0) in the	equation $r = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2}$,
	where symbols have their		- 4 2 2 4-	- 2 2 4-
	a) $[ML^3A^{-2}T^{-4}]$		c) $[M^{-1}L^{-3}A^{-2}T^{-4}]$	d) $[ML^3A^2T^{-4}]$
103		iquid is 70 <i>dyne/cm</i> , in MK	-	2 .
	a) 70 <i>N/m</i>	b) $7 \times 10^{-2} N/m$	in the second se	d) $7 \times 10^2 N/m$
104		l time each be doubled, the		•
	a) 4 times	b) 6 times	c) 8 times	d) 2 times
105	. Unit of impulse is	15.1		
	a) <i>Newton</i>	b) <i>kg</i> – <i>m</i>	c) $kg - m/s$	d) Joule
			, ,	
106	· The constant of proportio		w has the following units	
106	• The constant of proportion a) $C^{-2}Nm^2$		w has the following units c) C ² Nm ²	d) $C^{-2}N^{-1}m^{-2}$
		onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ and the formula of t		,
	. From the dimensional co	onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ nsideration, which of the fo	llowing equation is correct	:
	. From the dimensional co	onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ nsideration, which of the fo	llowing equation is correct	:
107	From the dimensional contains $T = 2\pi r \sqrt{\frac{R^3}{GM}}$	onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ nsideration, which of the foblotry $T=2\pi\sqrt{\frac{GM}{R^3}}$	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$	$d) T = 2\pi \sqrt{\frac{R^2}{GM}}$
107	. From the dimensional contains a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$. The length, breadth and t	ponality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ insideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ en by $l=12cm,b=6$ cm a	$d) T = 2\pi \sqrt{\frac{R^2}{GM}}$
107	From the dimensional contains a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$. The length, breadth and to The volume of block acco	onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ in the following probability of the following b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given right to the idea of signification.	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6$ cm a ant figures should be	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$
107108	From the dimensional contains a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$. The length, breadth and to The volume of block according a) $1\times 10^2~cm^3$	onality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ in Sideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification $2\times 10^2\ cm^3$	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse
107108	From the dimensional contains a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$. The length, breadth and to The volume of block accoonside a $1\times 10^2~cm^3$. A force F is given by $F=$	ponality $\frac{1}{4\pi\epsilon_0}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ in Sideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2\times 10^2\ cm^3$ $at+bt^2$, where t is time. V	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$ What are the dimensions of	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b
107108109	From the dimensional contains a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$. The length, breadth and to the volume of block accoonside a $1\times 10^2~cm^3$. A force F is given by $F=10^2~cm^3$. A force F is and ML^2T^{-4} .	b) $C^2N^{-1}m^{-2}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ in sideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2\times 10^2\ cm^3$ at t^2 , where t is time. We b) MLT^{-3} and MLT^{-4}	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$ What are the dimensions of	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b
107108109	a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsides a sign of the following is $T=1$. Which of the following is	b) $C^2N^{-1}m^{-2}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ in Sideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2\times 10^2\ cm^3$ at $t+bt^2$, where t is time. We b) MLT^{-3} and MLT^{-4} not a unit of energy	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1
107108109110	From the dimensional contains a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$. The length, breadth and to The volume of block according a) $1 \times 10^2 \ cm^3$. A force F is given by $F = a$ a) MLT^{-3} and ML^2T^{-4} . Which of the following is a) W - s	b) $C^2N^{-1}m^{-2}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ insideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2\times 10^2\ cm^3$ at $+bt^2$, where t is time. When t is the contraction of the idea of the idea of signification by t is the contraction of the idea of the idea of signification is t in the idea of signification in the idea of signification is t in the idea of signification in the idea o	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1
107108109110	From the dimensional contains a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$. The length, breadth and to the volume of block accoonside a) $1 \times 10^2 \ cm^3$. A force F is given by $F = a$ and ML^2T^{-4} . Which of the following is a) $W - s$. In a new system of units,	b) $C^2N^{-1}m^{-2}$ nsideration, which of the form b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When t is the idea of a unit of energy b) t is t in	llowing equation is correct c) $T=2\pi\sqrt{\frac{GM}{GR^2}}$ on by $l=12cm, b=6\ cm$ a ant figures should be c) $1.763\times 10^2\ cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1
107108109110	a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsides a second $1 \times 10^2 \ cm^3$. A force F is given by $F = 10^3 \ cm^3$. Which of the following is a) $W - 10^3 \ cm^3$. In a new system of units, 1 joule in this new hypothesis.	b) $C^2N^{-1}m^{-2}$ nsideration, which of the form b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When the idea is the idea of signification by t^2 , where t is time. When the idea is the idea is the idea is the idea of signification by t^2 , where t is time. When the idea is the idea is the idea in the idea idea in the idea idea idea idea. When t^2 is the idea idea idea idea idea idea idea ide	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6 cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) N - m f length is 1 km and unit of	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of
107 108 109 110 111	a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsists as $1 \times 10^2 \ cm^3$. A force F is given by $F = 10^3 \ cm^3$. Which of the following is a) $W - 10^3 \ cm^3$. Which of the following is a) $W - 10^3 \ cm^3$. In a new system of units, 1 joule in this new hypothal $10^3 \ cm^3$.	b) $C^2N^{-1}m^{-2}$ in Coulomb's law b) $C^2N^{-1}m^{-2}$ insideration, which of the form b) $T=2\pi\sqrt{\frac{GM}{R^3}}$ hickness of a block are given right to the idea of signification b) $2\times 10^2\ cm^3$ at $t+bt^2$, where t is time. When the idea is the contract of the idea of the idea of signification b) $t=0$ and	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ on by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ f length is 1 km and unit of c) 10^{11} new units	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units
107 108 109 110 111	From the dimensional contains a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$. The length, breadth and to the volume of block accoonside a) $1 \times 10^2 \ cm^3$. A force F is given by $F = a$ and ML^2T^{-4} . Which of the following is a) $W - s$. In a new system of units, 1 joule in this new hypotha) 3.6×10^{-4} new units. In an experiment, the following in the contains and $S = 10^{-4}$ new units.	b) $C^2N^{-1}m^{-2}$ nsideration, which of the form b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When t is the sum of the idea of th	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = 100 m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units
107 108 109 110 111	a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsides a second of the second of	b) $C^2N^{-1}m^{-2}$ Insideration, which of the formula b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ Thickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of signification is the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of significant is the idea of significant in the idea of significant i	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = 100 m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units
107 108 109 110 111	From the dimensional contains a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$. The length, breadth and to the volume of block accoonside a) $1 \times 10^2 \ cm^3$. A force F is given by $F = a$ and ML^2T^{-4} . Which of the following is a) $W - s$. In a new system of units, 1 joule in this new hypotha) 3.6×10^{-4} new units. In an experiment, the following in the contains and $S = 10^{-4}$ new units.	b) $C^2N^{-1}m^{-2}$ Insideration, which of the formula b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ Thickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of signification is the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of significant is the idea of significant in the idea of significant i	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = 100 m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units
107 108 109 110 111	a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsides a second of the second of	b) $C^2N^{-1}m^{-2}$ Insideration, which of the formula b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ Thickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of signification is the idea of signification by $t^2 = t^2$, where $t^2 = t^2$ is time. When the idea of significant is the idea of significant in the idea of significant i	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = 100 m$	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units
107 108 109 110 111	a) $T=2\pi r\sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsists a) $1\times 10^2~cm^3$ A force F is given by $F=a$) MLT^{-3} and ML^2T^{-4} . Which of the following is a) $W-s$. In a new system of units, 1 joule in this new hypotha) 3.6×10^{-4} new units. In an experiment, the followord $0.087~cm$, diameter $D=0.087~cm$, diameter $D=0.087~$	b) $C^2N^{-1}m^{-2}$ nsideration, which of the form b) $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given rding to the idea of signification b) $2 \times 10^2 \ cm^3$ $at + bt^2$, where t is time. When the idea of signification is to the idea of signification is to the idea of signification in the idea of signification is to the idea of signification in the idea of signification is to the idea of signification in the idea of signification is to the idea of signification in	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ en by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = m/s^2$ using the formula,	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units = $3.00 \ kg, l =$
107 108 109 110 111	a) $T = 2\pi r \sqrt{\frac{R^3}{GM}}$ The length, breadth and to the volume of block accoonsists a) $1 \times 10^2 \ cm^3$. A force F is given by $F = 10^3 \ cm^3$. Which of the following is a) $W - 10^3 \ cm^3$. Which of the following is a) $W - 10^3 \ cm^3$. In a new system of units, 1 joule in this new hypothal $W - 10^3 \ cm^3$. In an experiment, the following is an experiment, the following is always and $W - 10^3 \ cm^3$. The maximum $W - 10^3 \ cm^3$ is the maximum $W - 10^3 \ cm^3$. The maximum $W - 10^3 \ cm^3$ is the maximum $W - 10^3 \ cm^3$ in an experiment, the following is always and $W - 10^3 \ cm^3$ is the maximum $W - 10^3 \ cm^3$.	b) $C^2N^{-1}m^{-2}$ Insideration, which of the formula by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding to the idea of signification by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding to the idea of signification by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding to the idea of signification by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding to the idea of signification by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ by $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are given reding $T = 2\pi \sqrt{\frac{GM}{R^3}}$ hickness of a block are giv	llowing equation is correct c) $T = 2\pi \sqrt{\frac{GM}{GR^2}}$ on by $l = 12cm$, $b = 6cm$ a ant figures should be c) $1.763 \times 10^2 cm^3$ What are the dimensions of c) MLT^{-1} and MLT^0 c) $N-m$ If length is 1 km and unit of c) 10^{11} new units recorded: $L = 2.820 m$, $M = m/s^2$ using the formula,	d) $T = 2\pi \sqrt{\frac{R^2}{GM}}$ and $t = 2.45cm$ d) None of tehse a and b d) MLT^{-4} and MLT^1 d) $Joule$ time is 1 min. The value of d) 1.67×10^4 new units = $3.00 \ kg, l =$

114. The resistance $R = \frac{v}{i}$ w	where $V=100\pm5~volts$ and	$i = 10 \pm 0.2$ amperes. Wh	at is the total error in <i>R</i>
a) 5%		c) 5.2%	d) $\frac{5}{2}$ %
115. The quantity $X = \frac{\varepsilon_0 LV}{t}$:	$arepsilon_0$ is the permittivity of free s	space, L is length, V is pote	ntial difference and t is time.
The dimensions of X ar			
a) Resistance	b) Charge	c) Voltage	d) Current
116. <i>Ampere – hour</i> is a un	_	c) voicage	aj darrent
a) Quantity of electricit		b) Strength of electric cur	rrent
c) Power	J	d) Energy	
117. 1 Wb/ m^2 is equal to		.,	
	b) $4\pi \times 10^{-3}$ gauss	c) 10^2 gauss	d) 10^{-4} gauss
118. Unit of magnetic mome	_	, 0	, 0
a) Ampere – metre ²		c) Weber – metre²	d) Weber/metre
119. Surface tension has the	-	,	,
a) Coefficient of viscosi	ty	b) Impulse	
c) Momentum		d) Spring constant	
120. The dimensions of phys	sical quantity X in the equation		
Force $=\frac{X}{\text{Density}}$ is given			
		c) $M^2L^{-2}T^{-2}$	d) $M^1L^{-2}T^{-1}$
121. Given that $r = m^2 \sin p$		f the unit of m is N, then the	e unit of r is
a) N	b) N ²	c) Ns	d) N ² s
122. The dimensions of farac	d are		
a) $M^{-1}L^{-2}T^2Q^2$	d are b) $M^{-1}L^{-2}TQ$	c) $M^{-1}L^{-2}T^{-2}Q$	d) $M^{-1}L^{-2}TQ^2$
123. One light year is defined			
The same in metre is			-
a) 3×10^{12} m	b) 9.461×10^{15} m	c) 3×10^{15} m	d) None of these
124. The mean time period of			in the time period is 0.05s.
To express maximum es	stimate of error, the time per	riod should be written as	
a) $(2.00 \pm 0.01) s$	b) $(2.00 + 0.025) s$	c) $(2.00 \pm 0.05) s$	d) (2.00 ± 0.10) s
125. A vernier callipers has a	1 mm marks on the main sca	le. It has 20 equal divisions	on the Vernier scale which
match with 16 main sca	lle divisions. For this Vernier	callipers , the least count i	S
a) 0.02 <i>mm</i>	b) 0.05 <i>mm</i>	c) 0.1 mm	d) 0.2 <i>mm</i>
126. The relative density of a	material of a body is found by	y weighing it first in air and	l then in water. If the weight
•	ewton and weight in water is		en the relative density
along with the maximu	m permissible percentage er	ror is	
a) $5.0 \pm 11\%$	b) $5.0 \pm 1\%$	c) $5.0 \pm 6\%$	d) 1.25 ± 5%
127. The dimensions of coeff			
a) $[ML^2T^{-2}A^{-2}]$	b) $[ML^2T^{-2}A^{-1}]$	c) $[MLT^{-2}A^{-2}]$	d) $[MLT^{-2}A^{-1}]$
128. If force (F) , length (L) a		be the fundamental units, t	then the dimensional
formula of the mass wil			
a) [FL ⁻¹ T ²]	b) [FL ⁻¹ T ⁻²]	c) $[FL^{-1}T^{-1}]$	d) $[FL^2T^{-2}]$
129. Inductance L can be din			
a) $ML^2T^{-2}A^{-2}$	b) $ML^2T^{-4}A^{-3}$	c) $ML^{-2}T^{-2}A^{-2}$	d) $ML^2T^4A^3$
130. Linear momentum and	angular momentum have the		
a) Mass and length		b) Length and time	
c) Mass and time		d) Mass, length and time	
131. Which unit is not for ler	~		_
a) Parsec	b) Light year	c) Angstrom	d) Nano

132. SI unit of electric intensit	vis		
a) Coulomb	b) Coulomb/m ²	c) Newton	d) Newton/ coulomb
133. The thrust developed by	•		
	velocity of the gas, A is are		
	gas and surrounding atmos		
a) Correct	0	b) Wrong	· <i>,</i>
c) Sometimes wrong, son	netimes correct	d) Data is not adequate	
134. The dimensional formula		u) 2 12 quitt	
a) MLT^{-2}	b) <i>MLT</i> ⁻¹	c) ML^2T^{-1}	d) M^2LT^{-1}
135. If <i>P</i> represents radiation			•
-	ne non-zero integers <i>x, y</i> an		
	b) $x = 1, y = -1, z = 1$		
136. Which is not a unit of elec		0) 10 1,9 1,2 1	w) w 2) y 2) 2
a) NC^{-1}	b) <i>Vm</i> ⁻¹	c) <i>JC</i> ⁻¹	d) $JC^{-1}m^{-1}$
137. The dimensional formula	,	- '	
a) [MLT ⁻²]	b) [ML ² T ⁻¹ A ⁻²]	c) $[ML^2T^{-2}A^{-2}]$	d) $[MI^2T^{-2}\Delta^{-1}]$
138. The unit of self-inductano	, .	e) [ML I II]	u) [ME 1 /1]
a) Weber ampere	b) Weber ⁻¹ ampere	c) Ohm socond	d) Farad
139. Consider a new system of	-	_	
-	` •	, ,	•
	are taken as fundamental	units, which of the following	ig would correctly
represent mass in this ne		_	
a) $\frac{hc}{G}$	b) $\int_{a}^{a} \frac{Gc}{h}$	hG	d) \sqrt{hGc}
\sqrt{G}	$\sqrt[b]{h}$	$\frac{c}{\sqrt{c}}$	u) vitac
140. The dimensional formula	for the modulus of rigidity	is	
a) ML^2T^{-2}	b) $ML^{-1}T^{-3}$	c) $ML^{-2}T^{-2}$	d) $ML^{-1}T^{-2}$
141. Which of the following is	,		u) 1111 1
	not represented in correct	"ATION .	
a) $\frac{\text{Stress}}{\text{Strain}} = N/m^2$	JPLUS EDU	b) Surface tension = N/m	ı
c) Energy = $kg - m/sec$		d) Pressure = N/m^2	
142. If 1 g cm s ⁻¹ = x newton-	second, then the number x	-	
a) 1×10^{-3}	b) 3.6×10^{-3}	c) 1×10^{-5}	d) 6×10^{-4}
143. The time taken by an elec		-	•
this time in nanosecond v		to to enerted blace is one bit	une (one bhane 10 b)i
a) 10 ns	b) 4 ns	c) 2 ns	d) 25 ns
144. The dimensional formula		c) 2 113	u) 20 113
a) $M^0L^0T^{-1}$	b) MLT ⁻¹	c) $M^0L^0T^1$	d) ML^0T^{-2}
145. The physical quantity wh	-	•	uj ML 1
a) Surface tension	b) Solar constant	c) Density	d) Compressibility
146. The dimensions of $e^2/4\pi$		•	
	$\epsilon_0 nc$, where ϵ , ϵ_0 , n and c algebra in vacuum respectively	_	c permittivity, Flanck's
	b) $[M^1L^0T^0]$	c) $[M^0L^1T^0]$	d) $[M^0L^0T^1]$
a) $[M^0L^0T^0]$		$CJ [M^2L^2I^2]$	$\mathfrak{a}_{j} \left[M^{+}L^{+}I^{-} \right]$
147. Farad is not equivalent to)	-2	ī
a) $\frac{q}{V}$	b) qv^2	c) $\frac{q^2}{I}$	d) $\frac{J}{V^2}$
V		,	V
148. Given $X = (Gh/c^3)^{1/2}$, where $X = (Gh/c^3)^{1/2}$			istant and the velocity of
	sions of X are the same as t		
a) Mass	b) Time	c) Length	d) Acceleration
149. The velocity of a particle	\emph{v} at an instant \emph{t} is given by	$v = at + bt^2$ the dimension	on of <i>b</i> is

	a) [L]	b) [LT ⁻¹]	c) [LT ⁻²]	d) [LT ⁻³]
1	50. Dimensions of luminous a) ML^2T^{-2}	flux are b) ML^2T^{-3}	c) ML^2T^{-1}	d) <i>MLT</i> ⁻²
1	51. The ratio of the dimension	•	•	•
•	a) Frequency	b) Velocity	c) Angular momentum	d) Time
1	52. The equation of a wave i	•	ej migalai momentam	a) Time
_	=	s given by		
	$Y = A \sin \omega \left(\frac{x}{v} - k \right)$			
		elocity and v is the linear v	elocity.	
	The dimension of k is			
	a) <i>LT</i>	b) <i>T</i>	c) T^{-1}	d) <i>T</i> ²
1	53. The dimensional formula	a for impulse is		
	a) [MLT ⁻¹]	b) [ML ⁻¹ T]	c) $[M^{-1}LT^{-1}]$	d) [ML ⁻¹ T ⁻¹]
1	54. The radius of the sphere			
	a) $\frac{0.1}{4.3} \times 100$	b) $3 \times \frac{0.1 \times 100}{4.3}$	$\frac{1}{1}$ 0.1 × 100	d) $3 + \frac{0.1 \times 100}{4.3}$
	$\frac{4}{4.3} \times 100$	4.3	$\frac{1}{3} \times \frac{1}{4.3}$	$\frac{4.3}{4.3}$
1	55. Size of universe is about			
	a) Ten million light year	S	b) Million light years	
	c) Hundred million light	years	d) 10 million light years	
1	56. A cube has a side of leng	th 1.2 $ imes$ 10 ⁻² m. Calculate	its volume.	
	a) $1.7 \times 10^{-6} \text{ m}^3$	b) $1.73 \times 10^{-6} \text{ m}^3$	c) $1.70 \times 10^{-6} \text{ m}^3$	d) $1.732 \times 10^{-6} \text{ m}^3$
1	57. The SI unit of momentur	n is	>	
	ζkg	b) $\frac{kg.m}{soc}$	$kg.m^2$	13.4
	a) $\frac{kg}{m}$	b) sec	c) sec	d) $kg \times newton$
1	58. A calorie is a unit of heat	and equal 4.2 J. Suppose w	re employ a system of units	in which the unit of mass is
			he is γ sec. In this new syste	
	a) $\alpha^{-1}\beta^{-2}\gamma^2$	b) $4.2\alpha\beta^2\gamma^2$	c) $\alpha \beta^2 \gamma^2$	d) $4.2\alpha^{-1}\beta^{-2}\gamma^2$
1	59. Number of base SI unit is		PHILOIA	, ,
	a) 4	b) 7	c) 3	d) 5
1	60. Dimensions of bulk mod	•	<i>o</i> , <i>o</i>	u, 0
•	a) $[M^{-1}LT^{-2}]$	b) [ML ⁻¹ T ⁻²]	c) $[ML^{-2}T^{-2}]$	d) $[M^2L^2T^{-1}]$
1	61. Position of body with acc	<i>-</i>		-
1	a) $m = 1, n = 1$	b) $m = 1, n = 2$	c) $m = 2, n = 1$	d) $m = 2, n = 2$
1	, ,		c) $m = 2, n = 1$	$a_j m = z, n = z$
1	62. A pressure of 10^6 dyne c) 406N -2	D 407N =2
	a) 10^5N m^{-2}	b) 10 ⁴ N m ⁻²	c) 10^6N m^{-2}	d) 10^7N m^{-2}
1	63. The unit of Planck's cons			
	a) Joule	b) <i>Joule/s</i>	c) Joule/m	d) <i>Joule-s</i>
1	64. Candela is the unit of			
	a) Electric intensity	b) Luminous intensity	c) Sound intensity	d) None of these
1	65. The dimensions of gravit			_
	a) ML^3T^{-2} ; ML^2T^0	b) $M^{-1}L^3T^{-2}$; ML^2T^0	c) $M^{-1}L^3T^{-2}$; $M^{-1}L^2T$	d) ML^3T^{-2} ; $M^{-1}L^2T$
1	66. What will be the unit of to of force is kg wt?	time in that system in whicl	n the unit of length is metre	, unit of mass is kg and unit
	a) (9.8) ² sec	b) 9.8 sec	c) $\sqrt{9.8}$ sec	d) $\frac{1}{\sqrt{98}}$ sec
			-	V 210
1	67. If pressure P , velocity V	and time <i>T</i> are taken as fur	ndamental physical quantiti	es, the dimensional formula
	of force is	1.) n=1w2m=2	-) num?	1) n=11/m ²
	a) PV^2T^2	b) $P^{-1}V^2T^{-2}$	c) PVT^2	d) $P^{-1}VT^2$

168. If I is the moment of inertia and ω the angular velocity, what is the dimensional formula of rotational kinetic energy $\frac{1}{2}I\omega^2$?				
_		-) [MI 2m-2]	J) [M/2] =1m=2]	
a) [ML ² T ⁻¹]	b) $[M^2L^{-1}T^{-2}]$,	d) $[M^2L^{-1}T^{-2}]$	
a) $ML^{-2}T^{-3}$	nula for Planck's constant (h) i b) ML^2T^{-2}	c) ML^2T^{-1}	d) $ML^{-2}T^{-2}$	
,	es not having same dimension	,	a) ML -1 -	
a) Speed and $(\mu_0 \varepsilon_0)^-$	_	b) Torque and work		
c) Momentum and Pla		d) Stress and Young's n	andulus	
	s the same dimension as that o		lodulus	
a) Velocity gradient	b) Potential gradient	c) Energy gradient	d) None of these	
, ,	an oscillator is directly propo	, 0, 0	_	
proportionality are	an osemator is an early prope	resonar to the verseity. Th	are units of the constant of	
a) $kgms^{-1}$	b) $kgms^{-2}$	c) kgs^{-1}	d) <i>kgs</i>	
, 0	of capacitance (or farad) is		,, -	
a) $M^{-1}L^{-2}T^4A^2$		c) $MLT^{-4}A^2$	d) $M^{-1}L^{-2}T^{-4}A^{-2}$	
174. Joule-second is the u		-,	,	
a) Work	b) Momentum	c) Pressure	d) Angular momentum	
	2.1 cm, then $L + B$ is equal to	,	, 3	
a) 4.431 cm		c) 4.4 cm	d) 4 cm	
176. If the radius of the spl	here is (5.3 ± 0.1) cm. Then pe	rcentage error in its volu	me will be	
2 6 01 × 100	1 100	$/3 \times 0.01$	0.1	
a) $3 + 0.01 \times {5.3}$	b) $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$	c) $\left(\frac{1}{5.3}\right) \times 100$	d) $\frac{0.1}{5.2} \times 100$	
			5.5	
	gnetic field in M, L, T and C (co			
a) MT^2C^{-2}	b) $MT^{-1}C^{-1}$	c) $MT^{-2}C^{-1}$	d) $MLT^{-1}C^{-1}$	
	force (F) , acceleration (A) , an		indamental units then the	
dimensional formula	of energy is b) <i>FAT</i> ²	2 52 45	J) FAT	
,	,	,	d) FAT	
	he = $u + \frac{a}{2}(2n - 1)$, the letters	s have their usual meaning	gs. The dimensional formula	
of S_{nth} is				
a) [ML ⁰ T]	b) [ML ⁻¹ T ⁻¹]	c) $[M^0LT^{-1}]$	d) $[M^0LT^0]$	
	g system of units is not based			
a) SI	b) MKS	c) FPS	d) CGS	
181. The dimensions of pe		2- 42	2 - 4 - 1 - 2	
a) $A^2T^2M^{-1}L^{-3}$	b) $A^2T^4M^{-1}L^{-3}$	c) $A^{-2}T^{-4}ML^3$	d) $A^2T^{-4}M^{-1}L^{-3}$	
	owing is not a unit of Young's n		15.84	
a) Nm ⁻¹	b) Nm ⁻²	c) Dyne cm ⁻²	d) Mega pascal	
183. The unit of surface ter	•	-) D/	J. M	
a) $Dyne/cm^2$	b) Newton /m	c) Dyne/cm	d) Newton/m ²	
	les on the surface of water dep		(o), density (p) and	
wavelength (λ) . The s	square of speed (v) is proport			
a) $\frac{\sigma}{\rho\lambda}$	b) $\frac{\rho}{\sigma\lambda}$	c) $\frac{\lambda}{\sigma\rho}$	d) Pλσ	
	on .	•	ric field is	
	E^2 , where ϵ_0 is permittivity o			
a) <i>MLT</i> ¹	b) ML^2T^{-2}	c) $ML^{-1}T^{-2}$	d) ML^2T^{-1}	
	physical quantity are given by	- -		
a) Pressure if $a = 1$,		b) Velocity if $a = 1, b$		
c) Acceleration if $a =$	= 1, p = 1, c = -2	d) Force if $a = 0, b =$	-1, c = -2	
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCATIO	ON.ORG PHONE	NO: 8583042324 Page 11	

187. The dimensional formula of modulus of rigidity is		
a) $[ML^{-2}T^{-2}]$ b) $[ML^{-3}T_2]$	c) $[ML^2T^{-2}]$	d) $[ML^{-1}T^{-2}]$
188. SI unit of pressure is		
a) Pascal b) dynes/cm ²	c) cm of Hg	d) Atmosphere
189. The dimensional formula of capacitance in terms of	M, L, T and I is	
a) $[ML^2T^2I^2]$ b) $[ML^{-2}T^4I^2]$	c) $[M^{-1}L^3T^3I]$	d) $[M^{-1}L^{-2}T^4I^2]$
190. Which of the following groups have different dimen	sions	, ,
a) Potential difference, EMF, voltage	b) Pressure, stress, young	's modulus
c) Heat, energy, work-done	d) Dipole moment, electri	
191. The fundamental unit, which has the same power in		
viscosity is		or surrace tension and
a) Mass b) Length	c) Time	d) None of these
192. Two full turns of the circular scale of a screw gauge	•	
number of divisions on the circular scale is 50. Furth		
-0.03 mm. While measuring the diameter of a thin w		· ·
and the number of circular scale divisions in line wit		
a) 3.32 mm b) 3.73 mm	c) 3.67 mm	d) 3.38 mm
193. One million electron <i>volt</i> (1 <i>MeV</i>) is equal to	2 1 2 4 2 2	7
a) 10 ⁵ eV b) 10 ⁶ eV	c) $10^4 eV$	d) 10 ⁷ <i>eV</i>
194. Given, Force = $\frac{\alpha}{\text{density} + \beta^3}$		
What are the dimensions of α , β ?		
a) $[ML^2T^{-2}]$, $[ML^{-1/3}]$ b) $[M^2L^4T^{-2}]$, $[M^{1/3}L^{-1}]$	c) $[M^2L^{-2}T^{-2}][M^{1/3}L^{-1}]$	d) $[M^2L^{-2}T_0]$ $[ML^{-3}]$
195. Hertz is the unit for		a) [M B 12], [MB]
1 71 .	c) Electric charge	d) Magnetia flux
, ,	c) Electric charge	d) Magnetic flux
196. If $S = \frac{1}{3}ft^3$, f has the dimensions of		
a) [M ⁰ L ⁻¹ T ³] b) [MLT ⁻³]	c) $[M^0L^1T^{-3}]$	d) $[M^0L^{-1}T^{-3}]$
197. If $x = a - b$, then the maximum percentage error in	the measurement of x will	be
a) $\left(\frac{\Delta a + \Delta b}{a}\right) \times 100\%$	b) $\left(\frac{\Delta a}{a} - \frac{\Delta b}{b}\right) \times 100\%$	
$\langle a-b \rangle$	$\setminus u = D$	
c) $\left(\frac{\Delta a}{a-a} + \frac{\Delta b}{a-b}\right) \times 100\%$	d) $\left(\frac{\Delta a}{a-a} - \frac{\Delta b}{a-b}\right) \times 100$	0/2
(a		
198. If the error in the measurement of radius of a sphere	e is 2%, then the error in th	e determination of volume
of the sphere will be		
a) 8% b) 2%	c) 4%	d) 6%
199. Which pair has the same dimensions		
a) Work and power	b) Density and relative de	ensity
c) Momentum and impulse	d) Stress and strain	
200. The value of Planck's constant is		
a) 6.63×10^{-34} <i>J-sec</i> b) 6.63×10^{34} <i>J-sec</i>	c) $6.63 \times 10^{-34} kg \cdot m^2$	d) $6.63 \times 10^{34} kg$ -sec
201. Which of the following is the unit of specific heat?	,	,
a) Jkg $^{\circ}$ C ⁻¹ b) Jkg ⁻¹ $^{\circ}$ C ⁻¹	c) kg °CJ ⁻¹	d) J/kg ⁻¹ °C ⁻²
202. A body of mass $m = 3.513$ kg is moving along the x	, ,	
momentum is recorded as	1	8
17 565 1	c) 17.56 kg ms^{-1}	d) $^{17.57} \text{kg ms}^{-1}$
a) 17.6 kg ms ⁻¹ b) ^{17.565 kg ms⁻²}	c) Tribo ng ma	a) The Mana
203. A sextant is used to measure		
a) Area of hill	b) Height of an object	
c) Breadth of a tower	d) Volume of the building	

	racy of measurement and sig	nificant figures in expressin	g results of experiment,
which of the following			
	asurements 50.14 $\it cm$ and 0.0		
(2) If one travels 478	km by rail and 397 m by roa	d, the total distance travelle	ed is 478 <i>km</i>
a) Only (1) is correct		b) Only (2) is correct	
c) Both are correct		d) None of them is corre	ct
205. Which one of the follo	wing pair of quantities has s	ame dimension?	
a) Force and work do	ne	b) Momentum and impu	lse
c) Pressure and force		d) Surface tension and s	tress
206. If error in radius is 3%	%, what is error in volume of	sphere?	
a) 3%	b) 27%	c) 9%	d) 6%
207. Which of the following	g relation is wrong		
a) 1 ampere × 1 ohm	= 1 volt	b) 1 watt \times 1 sec = 1 jo	ule
	ılomb = 1 volt per meter	d) 1 coulomb \times 1 volt =	
	nductance of coil which is in	•	
following has the unit		•	•
a) \sqrt{LC}	b) <i>C/L</i>	c) CL	d) L^2/C^2
	ne in the evolution of the uni	,	, ,
-	ds on three fundamental cons		•
G and Planck's consta		stants-speed c of fight in vac	Ludin, gravitational constant
G and Planck's Consta		Ch	a. 1/2
a) <i>Ghc</i> ⁵	b) $\frac{c^5}{Ch}$	c) $\frac{Gh}{c^5}$	d) $\left(\frac{Gh}{c^5}\right)^{1/2}$
	un .	C C	()
	31 MeV energy. The rest mas	ss of electron is 9.1×10^{-31}	kg. the
Mass equivalent energ		,	
$(1 \text{ amu} = 1.67 \times 10^{-1})$			
a) 0.5073 MeV	b) 0.693 MeV	c) 4.0093 MeV	d) None of these
	our dimensional quantities, w		
 a) Acceleration due to 	gravity	b) Surface tension of wa	ter
c) Weight of a standar	rd kilogram mass	d) The velocity of light in	n vacuum
212. The unit of Stefan's co	nstant is		
a) Wm ⁻² K ⁻¹	b) Wm K ⁻⁴	c) Wm ⁻² K ⁻⁴	d) Nm ⁻² K ⁻⁴
213. The correct value of 0	° C on the Kelvin scale is		
a) 273.15 <i>K</i>	b) 272.85 <i>K</i>	c) 273 <i>K</i>	d) 273.2 <i>K</i>
214. The velocity v of water	er waves may depend on thei	r wavelength (λ), the densit	by of water (ρ) and the
	avity (g). The method of dim		
a) $v^2 \propto \lambda^{-1} \rho^{-1}$	b) $v^2 \propto g\lambda$	c) $v^2 \propto g\lambda\rho$	d) $g^{-1} \propto \lambda^3$
215. Which of the followin	, 0	, 0,	7.5
a) Micro second	b) Leap year	c) Lunar month	d) Parallactic second
•	stors are $R_1 = (6 \pm 0.3)k\Omega$ a	-	
	when they are connected in		percentage error in the
a) 5.125%	b) 2%	c) 10.125%	d) 7%
217. SI unit of permittivity	-	c) 10.12370	4) / /0
a) $C^2m^2N^2$	b) $C^2m^{-2}N^{-1}$	c) $C^2m^2N^{-1}$	d) $C^{-1}m^2N^{-2}$
	les on the surface of water de	,	,
		-	(p) and
σ	quare of speed (v) is propor	_	
a) $\frac{\sigma}{\rho\lambda}$	b) $\frac{\rho}{\sigma^{\lambda}}$	c) $\frac{\lambda}{\sigma\rho}$	d) $ ho\lambda\sigma$
<i>i</i>	On	$o \rho$	
219. The dimensions of 1/2	z ɛʁ- are same as ergy per unit volume)	h) Energy	
a i inicigy density ten	CLEV DCL UIIIL VUIUIIICI	OT PHETSA	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 13

	c) Power	d) None of the above	
22	0. Which one of the following pairs of quantiti	es and their unit is proper match	?
	a) Electric field-coulomb/m	b) Magnetic flux-webe	r
	c) Power-farad	d) Capacitance-henry	
22	1. The physical quantity which is not a unit of	energy is	
	a) Volt-coulomb b) MeV-sec	c) Henry (ampere) ²	d) Farad-(volt) ²
22	2. If the constant of gravitation (G) , Plank's co	instant (h) and the velocity of light	ht (c) be chosen as
	fundamental units. The dimension of the ra	dius of gyration is	
	a) $h^{1/2}c^{-3/2}G^{1/2}$ b) $h^{1/2}c^{3/2}G^{1/2}$	c) $h^{1/2}c^{-3/2}G^{-1/2}$	d) $h^{-1/2}c^{-3/2}G^{1/2}$
22	3. Which of the following quantities is dimens	ionless	
	a) Gravitational constant	b) Planck's constant	
	c) Power of a convex lens	d) None	
22	4. If the units of mass, length and time are dou	ıbled unit of angular momentum	will be
	a) Doubled	b) Tripled	
	c) Quadrupled	d) Eight times the orig	inal value
22	$5.\frac{h}{2\pi}$ is the dimension of		
	a) Velocity b) Momentum	c) Energy	d) Angular momentum
22	6. What is the dimensional formula of mc^2 , where c^2 is the dimensional formula of mc^2 , where c^2 is the dimensional formula of mc^2 .		, ,
	a) $[MLT^{-1}]$ b) $[ML^0T^0]$	c) $[ML^2T^{-2}]$	d) $[M^{-1}L^3T^6]$
22	7. Which is different from others by units	,	7.
	a) Phase difference	b) Mechanical equivale	ent
	c) Loudness of sound	d) Poisson's ratio	
22	8. Which of the following five physical parame	eters have the same dimensions	
	(A) Energy density (B) Refractive index (C)	Dielectric constant (D) Young's	modulus
	(E) Magnetic field		
	a) (A) and (D) b) (A) and (E)	c) (B) and (D)	d) (C) and (E)
22	9. Which of the following is not equal to watt	DUCATION	
	a) joule/second b) ampere \times vo		d) ampere/volt
23	0. The dimensions of $\frac{a}{b}$ in the equation $P = \frac{a-b}{b}$	$\frac{t^2}{x}$, where P is pressure, x is dista	nce and t is time, are
	a) MT^{-2} b) M^2LT^{-3}	c) ML^3T^{-1}	d) LT^{-3}
23	1. Dimensions of impulse are same as that of	-,	,
	a) Force b) Momentum	c) Energy	d) Acceleration
23	2. <i>Dyne/cm</i> ² is not a unit of	, 63	,
	a) Pressure b) Stress	c) Strain	d) Young's modulus
23	3. Given $\pi=3.14$. the value of π^2 with due reg		, ,
	a) 9.86 b) 9.859	c) 9.8596	d) 9.85960
23	4. Which is the correct unit for measuring nuc	lear radii	•
	a) Micron b) Millimetre	c) Angstrom	d) <i>Fermi</i>
23	5. The dimensional formula of electrical cond	activity is	
	a) $[M^{-1}L^{-3}T^3A^2]$ b) $[ML^3T^3A^2]$	c) $[M^2L^3T^{-3}A^2]$	d) $[ML^3T^3A^{-2}]$
23	6. If the time period (T) of vibration of a liqui	d drop depends on surface tension	on (S) , radius (r) of the drop
	and density (ho) of the liquid, then the expre	ession of T is	
	a) $T = k\sqrt{\rho r^3/S}$ b) $T = k\sqrt{\rho^{1/2}r^3}$	$S/S = C T - k \left[\frac{3}{5} \right] \frac{51/2}{2}$	d) None of these
	·	•	
23	7. The period of oscillation of a simple pendul	-	d as 2.63 s, 2.56 s, 2.42 s, 2.71 s
	and 2.80 s respectively. The average absolu		D 4.0
~ -	a) 0.1 s b) 0.11 s	c) 0.01 s	d) 1.0 s
23	8. Dimensional formula of Stefan's constant is		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 14

a) $MT^{-3}K^{-4}$	b) $ML^2T^{-2}K^{-4}$	c) ML^2T^{-2}	d) $MT^{-2}L^0$
•	f universal gas constant is	•	•
a) $[ML^2T^{-2}\theta^{-1}]$	b) $[M^2LT^{-2}\theta]$	c) $[ML^3T^{-1}\theta^{-1}]$	d) None of these
²⁴⁰ . In the determinati	ion of Young's modulus $(Y = \frac{4}{n})$	$\left(\frac{MLg}{2d^2}\right)$ by using Searle's m	ethod, a wire of length $L = 2m$
	0.5mm is used. For a load $M =$		
wire is observed.	Quantities d and ℓ are measure	ed using a screw gauge ar	nd a micrometer, respectively.
They have the san	ne pitch of $0.5\ mm$. The number	er of divisions on their ci	rcular scale is 100. The
contributions to tl	he maximum probable scale is	100. The contributions to	o the maximum probable error of
the Y measuremen	nt		
a) Due to the erro	rs in the measurements of d ar	nd ℓ are the same	
b) Due to the erro	r in the measurement of d is tw	vice that due to the error	in the measurement of ℓ
•	r in the measurement of ℓ is tv		
•	r in the measurement of d is for		
0 0 0	es the following reading when	used to measure the diar	neter of a wire.
Main scale reading	~		
Circular scale read	_		
	on main scale corresponds to		
100 divisions of th			
	vire from the above data is		D 0 50
a) 0.052 cm	b) 0.026 cm	c) 0.005 cm	d) 0.52 cm
	ng pairs, which one does not ha		
	tia and moment of force	b) Work and torque	
, ,	ntum and Planck's constant	d) Impulse and mor	
_	our dimensional quantities , wh	-	
a) Acceleration du	-	b) Surface tension of	
	ndard kilogram mass ifference V =(8 \pm 0.5) volt and	d) The velocity of light current $I = (2 \pm 0.2) A$	
a) $4 \pm 16.25\%$	b) $4 \pm 6.25\%$	current $I = (2 \pm 0.2)A$.	d) $4 \pm 8\%$
•	naterial in CGS system of units	•	, –
	mass is $100 g$, the value of de		units which unit of length is
a) 400	b) 0.04	c) 0.4	d) 40
,	material of a cube is measured		
			2% respectively. The maximum
	arement of density is	on one rongen are a 70 anna	= / (
a) 1%	b) 5%	c) 7%	d) 9%
-		essed as $\left(P + \frac{a}{A}\right) = \frac{R\theta}{A}$	Where P is the pressure, V the
a) $[ML^5T^{-2}]$	olute temperature and a and b b) $\lceil M^{-1}L^5T^{-2} \rceil$	c) $[ML^{-1}T^{-2}]$	d) $[ML^{-5}T^{-2}]$
,	cal quantity which has negativ		a) [ML - 1 -]
a) Angular mome		b) Torque	
, ,	nermal conductivity	d) Gravitational cor	netant
249. The dimensions o	_	uj Gravitational cor	istalit
a) MLT^{-1}	b) ML^2T^{-2}	c) $ML^{-1}T^{-2}$	d) MLT^{-2}
•	resistors are $R_1 = (6 \pm 0.3)$ k	•	
	nce when they are connected i		2. The percentage error in the
a) 5.125%	b) 2%	c) 3.125%	d) 10.125%
	llowing system of units, weber	•	-
a) CGS	b) MKS	c) SI	d) None of these
,	- <i>j</i> -	-,	,

	_		
252. A physical quantity is gi	-	_	rement of M , L and T are
	Then, the maximum % erro		
a) $a\alpha + b\beta + c\gamma$	b) $a\alpha + b\beta - c\gamma$	c) $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma}$	d) None of these
253. If the velocity of light c ,	gravitational constant G an	d Planck's constant h are c	hosen as fundamental units,
•	h <i>L</i> in the new system is		·
a) <i>hcG</i> ⁻¹	b) $[h^{1/2}c^{1/2}G^{-1/2}]$	c) $[hc^{-3}G^1]$	d) $\left[h^{1/2}c^{-3/2}G^{1/2}\right]$
254. Which of the following		·	1
a) Angle	prijorear quarreres nas nere	b) Luminous intensity	
c) Coefficient of friction		d) Current	
255. The modulus of elasticit		•	
a) Strain	ly is aimensionally equivale	b) Force	
c) Stress		d) Coefficient of viscosit	V
256. What is the area of a dis	c of radius 1.1 cm?	a) doemerent of viscosit	y
a) 3.8028571 cm ²	b) 3.8029 cm ²	c) 3.803 cm ²	d) 3.8 cm ²
257. The length of a cylinder		,	
		~	wen that length is 5.0 <i>cm</i> . and
	rcentage error in the calcul		_
a) 1%	b) 2%	c) 3%	d) 4%
258. If <i>C</i> and <i>R</i> represent cap	•	•	
a) M^0L^0 T^2	pacitance and resistance re b) M^0L^0 T	spectively, then the diffiens c) ML^{-1}	
•			d) None of these above
259. In the following list, the		ent almensions, is	
a) Linear momentum ar			
b) Planck's constant and	_		
c) Pressure and modulu	·		
d) Torque and potential			
260. Dimensions of $\frac{1}{\mu_0 \epsilon_0}$, whe a) $[L^{-1}T]$	re symbols have their usua	l meaning, are	
a) [L ⁻¹ T]	b) [L ² T ²]	c) $[L^2T^{-2}]$	d) [LT ⁻¹]
261. In the relation $y = r \sin y$			
a) [M ⁰ L ⁰ T ⁰]		c) $[M^0L^0T^1]$	d) $[M^0L^1T^0]$
262. Electron – volt is the un	it of energy (1 eV = 1.6×1	0^{-19} I) in H-atom, the bind	ling energy of electron in
first orbit is 13.6 eV. The			
a) 10×10^{-19} J	b) 21.76× 10 ⁻¹⁹ J	c) 13.6×10^{-19} J	d) None of these
263. The dimensions of press		,	,
a) Force per unit volum	-	b) Energy per unit volur	ne
c) Force		d) energy	
264. For the equation $F \propto A^c$	$^{a}v^{b}d^{c}$, where F is the force.		ity and d is the density, the
value of a , b and c are re			,,,,
a) 1,2,1	b) 2,1,1	c) 1,1,2	d) 0,1,1
265. The SI unit of universal		0) 1,1,2	4) 0,1,1
	b) Newton $K^{-1}mol^{-1}$	c) $Ioule K^{-1}mol^{-1}$	d) $Fra\ K^{-1}mol^{-1}$
-		* *	, ,
266. If $E = \text{energy}$, $G = \text{gravity}$	itational constant, $I = impu$	alse and $M = \text{mass}$, then dir	nensions of $\frac{1}{E^2}$ are same as
that of			
a) Time	b) Mass	c) Length	d) Force
267. Dimensional formula fo	r force is		
a) $[M^1L^2T^{-2}]$	b) $[M^1L^1T^{-2}]$	c) $[M^1L^{-1}T^{-2}]$	d) $[M^1L^{-2}T^{-2}]$
268. Dimensions of the follow	wing three quantities are th	e same	
a) Work, energy, force		b) Velocity, momentum,	impulse

GPLUS EDUCATION

269.	A gas bubble from an expl			-
270		b) $T = kp^{-4/7}\rho^{1/2}E^{1/3}$	c) $T = kp^{-5/6}\rho^{1/2}E^{1/2}$	d) $T = kp^{-4/7}\rho^{1/3}E^{1/2}$
	a) $[MLT^{-2}A^{-1}]$	b) $[ML^2T^{-1}A^{-1}]$	c) $[ML^2T^{-1}A^{-2}]$	d) $[ML^2T^{-2}A^{-1}]$
2/1.	The dimensions of K in th	2		
	a) $M^1L^0T^{-2}$	b) $M^0L^1T^{-1}$	c) $M^1L^1T^{-2}$	d) $M^1L^0T^{-1}$
272.	Kilowatt – hour is a uni	t of		
	a) Electrical charge	b) Energy	c) Power	d) Force
273.	If $L = 2.331 cm$, $B = 2.1 c$			
	a) 4.431 <i>cm</i>	b) 4.43 <i>cm</i>	c) 4.4 <i>cm</i>	d) 4 <i>cm</i>
274.		ient of thermal conductivity		
	a) $ML^2T^{-2}K^{-1}$	b) $MLT^{-3}K^{-1}$	c) $MLT^{-2}K^{-1}$	d) $MLT^{-3}K$
275.	Which of the following is			
	a) Unit of mass	b) Unit of length	c) Unit of time	d) Unit of volume
276.	-	is to be determined in an e	-	
		ch is 0.5 mm and there are 5		_
		that on the circular scale is		ed mass of the ball has a
	relative error of 2%, the r	elative percentage error in		
	a) 0.9%	b) 2.4%	c) 3.1%	d) 4.2%
277.	Density of a liquid in CGS	system is $0.625 \ g/cm^3$. Wh	nat is its magnitude in SI sy	stem
	a) 0.625	b) 0.0625	c) 0.00625	d) 625
278.		tic field in M, L, T and C (co		
	a) $[MLT^{-1}C^{-1}]$	b) $[MT^2C^{-2}]$	c) $[MT^{-1}C^{-1}]$	d) $[MT^{-2}C^{-1}]$
279.		g represents the correct dir b) [MLT ⁻¹]		of viscosity? d) $[ML^{-2}T^{-2}]$
280.	When a wave traverses a	medium, the displacement	of a particle located at x at	a time t is given by $y =$
	$a \sin(bt - cx)$, where a, b	and <i>c</i> are constants of the	wave. Which of the following	ng is a quantity with
	dimensions			
	a) $\frac{y}{a}$	b) <i>bt</i>	a) av	d) $\frac{b}{a}$
	$\frac{a}{a}$	טן טנ	c) cx	c C
281.	Energy per unit volume re	epresents		
	a) Pressure	b) Force	c) Thrust	d) Work
282.	The unit of self inductance	e of a coil is		
	a) Farad	b) <i>Henry</i>	c) Weber	d) Tesla
283.	The length, breadth and the volume of the block is	hickness of a metal block is	given by $l = 90$ cm, $b = 8$	cm, $t = 2.45$ cm. The
	a) $2 \times 10^2 \text{cm}^3$	b) $1.8 \times 10^2 \text{cm}^3$	c) $1.77 \times 10^2 \text{cm}^3$	d) $1.764 \times 10^2 \text{cm}^3$
284.	One slug is equivalent to 1	l 4.6 kg. A force of 10 pound	is applied on a body of 1 k	g. The acceleration of the
	body is			
	a) 44.5 ms^{-2}	b) 4.448 ms ⁻²	c) 44.4 ms ⁻²	d) None of these
285.	A physical quantity A is re	elated to four observations	a b c and d as follows $A =$	$=\frac{a^2b^3}{a}$ The percentage
				* * **
	the quantity A			at is the percentage error in
	a) 12%	b) 7%	c) 5%	d) 14%
286.	The SI unit of electrochem	nical equivalent is		

	a) Kg C	b) C kg ⁻¹	c) Kg C ⁻¹	d) kg^2C^{-1}
287.	The position of a particle a	at time t is given by the equ	uation $x(t) = \frac{v_0}{A} (1 - e^{At})$,	$v_0 = \text{constant and } A > 0.$
	Dimensions of v_0 and A re		11	
	a) $[M^0LT^0]$ and $[M^0L^0T^{-1}]$		b) $[M^0LT^{-1}]$ and $[M^0LT^{-2}]$?]
	c) $[M^0LT^{-1}]$ and $[M^0L^0T]$	_	d) $[M^0LT^{-1}]$ and $[M^0L^0T^{-1}]$	-1
288.	Dimensions of magnetic fi	eld intensity is	,	-
	a) $[M^0L^{-1}T^0A^1]$	_	c) $[ML^0T^{-2}A^{-1}]$	d) $[MLT^{-2}A]$
289.	,	thermal conductivity, d the	e density and c the specific	,
	X = K/dc will be	•		
	a) cm sec ⁻¹	b) $cm^2 sec^{-2}$	c) cm sec	d) $cm^2 sec^{-1}$
290.	The period of oscillation of	of a simple pendulum is giv	en by $T = 2\pi \sqrt{\frac{l}{g}}$ where l is	about 100 cm and is
			N^g s. The time of 100 oscillation	
		. The percentage error in g		ons is ineasured by a stop
	a) 0.1%	b) 1%	c) 0.2%	d) 0.8%
291	A weber is equivalent to	D) 170	C) 0.2 /0	uj 0.0 /0
<i>2</i> / 1.	a) A m^{-2}	b) A m ⁻¹	c) A m ²	d) T m ²
292		f the Kr ⁸⁹ are there in one		uj i m
<i>L) L</i> ,	a) 658189.63	b) 2348123.73	c) 1650763.73	d) 1553164.12
293		•	ance, then the dimensions o	,
2,01		the muuctance and resista	ance, then the unitensions c	R R
	will be		0	
	a) $M^0L^0T^{-1}$	- A -	b) <i>M</i> ⁰ <i>LT</i> °	
	c) $M^{0}L^{0}T$	16 (7) 1 -1	d) Cannot be represented	
294.		and force (F) be taken as f	undamental quantity, then	what are the dimensions of
	mass	12 F =2	> π =1	D F = 2
205	· ·	b) Ev^{-2}	c) Fv^{-1}	d) Fv^{-2}
295.		ot having same dimensions	at the contract of the contrac	, ,
	a) Torque and work	1 1	b) Momentum and Planck	's constant
206	c) Stress and Young's mod		d) Speed and $(\mu_0 \varepsilon_0)^{-1/2}$	1 · 1 · · · · · · · · · · · · · · · · ·
296.	,		e(T) as their fundamental	pnysical quantities. The
	dimensions of length on M	b) $F^{-1}T^2$	c) $F^{-1}A^2T^{-1}$	d) AT^2
207	a) FT^2	•	-	uj AI -
297.	•	$\left(\frac{a}{\sqrt{2}}\right)(V-b) = RT$, the dimen	nsions of a are	
	,	b) $[M^{-1}L^3T^{-1}]$	c) $[ML^5T^{-2}]$	d) $[M^{-1}L^{-5}T^2]$
298.		o of angular to linear mome		
	a) $M^0L^1T^0$	b) $M^1L^1T^{-1}$	c) $M^1L^2T^{-1}$	d) $M^{-1}L^{-1}T^{-1}$
299.	If the acceleration due to §	gravity is $10 ms^{-2}$ and the	units of length and time are	e changed in kilometer and
	hour respectively, the nun	nerical value of the acceler	ation is	
	a) 360000	b) 72,000	c) 36,000	d) 129600
300.	The dimensions of $\frac{R}{I}$ are			
	[here, R =electric resistar	A = Self inductance		
	a) $[T^{-2}]$	b) [T ⁻¹]	c) [ML ⁻¹]	d) [T]
301.	,	, r ,	nbers 25.12, 2009, 4.156 ar	,
	a) 1	b) 2	c) 3	d) 4
302.	The unit of momentum is	,	,	,
	a) N s	b) Ns ⁻¹	c) N m	d) N m ⁻¹

GPLUS EDUCATION

303.		on on a body is $F = \mu N$. He n. The dimensions of μ are	re, $N = \text{normal reaction for}$	rce on the body $\mu =$	
	a) [MLT ⁻²]	b) $[M^0L^0T^0\theta^{-1}]$	c) Dimensionless	d) None of these	
304.	The speed of light (c) , gra	vitational constant (G) and		•	
	units in a system. The dim	ension of time in this new s	system should be		
	a) $G^{1/2}h^{1/2}c^{-5/2}$	b) $G^{-1/2}h^{1/2}c^{1/2}$	c) $G^{1/2}h^{1/2}c^{-3/2}$	d) $G^{1/2}h^{1/2}c^{1/2}$	
305.	Dimensions of kinetic ene	rgy are			
	a) ML^2T^{-2}	b) M^2LT^{-1}	c) ML^2T^{-1}	d) ML^3T^{-1}	
306.	The air bubble formed by	explosion inside water per	formed oscillation with tim	te period T that is directly	
	proportional to $p^a d^b E^c$,	where $\it p$ is the pressure, $\it d$ i	s the density and E is the e	nergy due to explosion.	
	The values of a , b and c w	ill be			
	a) -5/6, 1/2, 1/3	b) 5/6, 1/3, 1/2	c) 5/6, 1/2, 1/3	d) None of these	
307.	Identify the pair whose di	mensions are equal			
	a) Torque and work	b) Stress and energy	c) Force and stress	d) Force and work	
308.	•	nnot be regarded as an esse		t of measurement?	
	a) Inaccessibility		b) Indenstructibility		
	c) Invariability		d) Reproductibility		
309.	What is the power of a 10				
	a) 10 ⁶ ergs ⁻¹	b) 10 ⁷ ergs ⁻¹	, ,	d) 10 ¹¹ ergs ⁻¹	
310.				and the length of the sides	
	of the plate by using the formula $p = \frac{F}{I^2}$. If the maximum errors in the measurement of force and length are				
	4% and 2% respectively, t	then the maximum error in	the measurement of press	ure is	
	a) 1%	b) 2%	c) 8%	d) 10%	
311.	How many wavelengths o	f Kr^{86} are there in one me	tre		
	a) 1553164.13	b) 1650763.73	c) 652189.63	d) 2348123.73	
312.	One femtometre is equiva				
	a) 10 ¹⁵ m	b) 10 ⁻¹⁵ m	c) 10^{-12} m	d) 10 ¹² m	
313.	A rectangular beam which	is supported at its two end		with weight w sags by an	
	amount δ such that $\delta = \frac{\kappa}{4\lambda}$	$\frac{vl^3}{Vd^3}$, where l , d and Y repres	ent length, depth and elast	icity respectively.	
	Guess the unknown factor	using dimensional conside	erations		
		b) (breadth) ²	_	d) Mass	
314.	The unit of L/R is (where	L = inductance and R = R	esistance)		
	a) Sec	b) Sec^{-1}	c) Volt	d) <i>Ampere</i>	
315.	The dimensions of <i>calori</i>	e are			
	a) ML^2T^{-2}	b) <i>MLT</i> ⁻²	c) ML^2T^{-1}	d) ML^2T^{-3}	
316.	The dimensions of potenti	ial are the same as that of			
	a) Work		b) Electric field per unit ch	narge	
	c) Work per unit charge		d) Force per unit charge		
317.	If the units of M and L are	increased three times, then	n the unit of energy will be	increased by	
	a) 3 times	b) 6 times	c) 27 times	d) 81 times	
318.		in an electrical circuit, in te	rms of dimension of mass <i>l</i>	M, of length L , of time T and	
	current <i>I</i> , would be	1 > [nex 2m=2]) [14x 2m=1x=1]	1) [14x 2m=3x=21	
040	a) $[ML^2T^{-3}I^{-1}]$	b) [ML ² T ⁻²]	c) $[ML^2T^{-1}I^{-1}]$	d) $[ML^2T^{-3}I^{-2}]$	
319.		team that muscle times spe	ea equals power. What din	nensions does he view for	
	muscle	L) MI2T-2	-) MITT?	1) 1	
220	a) <i>MLT</i> ⁻²	b) ML^2T^{-2}	c) MLT ²	d) L	
3 2 U.	_	ns were take for determinin $1.25 imes 10^{-2}$ m and rise of	_		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 19

Taking $g = 9.80 \text{ms}^{-2}$ and using the relation $T = (rgh/2) \times 103 \text{Nm}^{-1}$, what is the possible error in surface tensionT? a) 2.4% b) 15% c) 16% d) 0.15% 321. $X = 3YZ^2$ find dimension of Y in (MKSA) system, If X and Z are the dimensions of capacity and magnetic field respectively a) $M^{-3}L^{-2}T^{-4}A^{-1}$ c) $M^{-3}L^{-2}T^4A^4$ d) $M^{-3}L^{-2}T^8A^4$ b) ML^{-2} 322. Student I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different lengths of the pendulum and/or record time for different number of oscillations. The observations are shown in the table.. Least count for length = 0.1 cm. Least count for time = 0.1 s. Length Stu Number Total Time perio den of the of time for t pendul oscillati (n) d (s) um ons (n) oscillatio (cm) ns (s) 8 128.0 16.0 I 64.0 II 64.0 4 64.0 16.0 Ш 20.0 4 36.0 9.0 If E_1 , $E_{\rm II}$ and $E_{\rm III}$ are the percentage errors in g, ie, $\left(\frac{\Delta g}{g} \times 100\right)$, for students I, II and III respectively. a) $E_{\rm I} = 0$ b) $E_{\rm I}$ is minimum c) $E_{\rm I} = E_{\rm II}$ d) E_{II} is maximum 323. The physical quantity which has dimensional formula as that of $\frac{\text{Energy}}{\text{Mass} \times \text{Length}}$ is a) Force b) Power d) Acceleration c) Pressure 324. Young's modulus of a material has the same units as b) Strain c) Compressibility a) Pressure d) Force 325. The dimensional formula for r.m.s. (root mean square) velocity is a) M^0LT^{-1} c) $M^0L^0T^{-1}$ b) $M^0L^0T^{-2}$ d) MLT^{-3} 326. Dimensions of potential energy are b) ML^2T^{-2} d) $ML^{-1}T^{-2}$ c) $ML^{-1}T^{-2}$ a) MLT^{-1} 327. The unit of e.m.f. is b) *Joule – coulomb* a) Joule c) *Volt* – *coulomb* d) Joule/coulomb 328. A student performs an experiment for determination of $g = \frac{4\pi^2 l}{r^2}$ and he commits an error of Δl . For that he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human error of 0.1 sec. For which of the following data, the measurement of q will be most accurate Δl ΔT nAmpli. of oscill. a) 5 mm 0.2sec 10 5mmb) 5 mm 0.2sec 20 5mmc) 5 mm 0.1sec 20 1mmd) 1 mm 0.1sec 50 1mm329. If C is capacitance and q is charge, then the dimension of q^2/C is same as that of a) Work b) Angular momentum c) Force d) Torque 330. Error in the measurement of radius of sphere is 2%. The error in the measurement of volume is a) 1% b) 5% c) 3% d) 6%

331. Curie is a unit of

a) Energy of γ-rays	b) Half life	c) Radioactivity	d) Intensity of γ-rays
332. Which has not the san	ne unit as other?		
a) Watt-sec	b) Kilowatt-hour	c) eV	d) Js
333. The length of a cube is	s 2.1×10^{-2} m. the volume in	n significant figures will be	e
a) $9.2 \times 10^{-6} \text{m}^3$	b) $9.3 \times 10^{-6} \text{m}^3$	c) $9.26 \times 10^{-6} \text{m}^3$	d) 9.261×10^{-6} m ³
334. Position of a body wit	h acceleration a is given by	$x = ka^m t^n$. Here t is time	e. Find the dimensions of
m and n .			
a) $m = 1, n = 1$	b) $m = 1, n = 2$	c) $m = 2, n = 1$	d) $m = 2, n = 2$
335. Which one of the follo	wing units is not that of mu	tual inductance?	
a) Henry		b) (Weber) ⁻¹	
c) Ohm second		d) Volt second (ampe	re) ⁻¹
336. Two quantities A and	B are related by the relation	$n\frac{A}{B}$ = m, where m is linear n	mass den sity and A is force.
The dimensions of B v	will be		
a) Mass as that of late	ent heat	b) Same a that of pres	sure
c) Same as that of wo	rk	d) Same as that of mo	mentum
337. The dimensions of ele	ctric potential are		
a) $[ML^2T^{-2}Q^{-1}]$	b) $[MLT^{-2}Q^{-1}]$	c) $[ML^2T^{-1}Q]$	d) $[ML^2T^{-2}Q]$
338. The dimensions of gra	witational constant $\it G$ and the	ie moment of inertia are r	espectively
a) $[ML^3T^{-2}]$; $[ML^2T^0]$	b) [M ⁻¹ L ³ T ⁻²]; [ML ² T ⁰	c) $[M^{-1}L^3T^{-2}]$; $[M^{-1}L^3T^{-2}]$	$[ML^{3}T^{-2}]$; $[M^{-1}L^{2}T]$
339. The unit of absolute p	permittivity is		
a) Fm (farad — met	re)	b) Fm^{-1} ($farad/met$	re)
c) Fm^{-2} ($farad/met$	re^2)	d) F (farad)	
340. $[ML^2L^{-2}]$ are dimension	ons of		
a) Force	b) Moment of force	c) Momentum	d) Power
341. the dimensional form	ula of latent heat is		
a) $[M^0L^2T^{-2}]$	b) [MLT ²]	c) $[ML^2T^{-2}]$	d) [MLT ⁻¹]
342. Which of the following	g is not the unit of energy	CATION	
a) <i>Calorie</i>	b) Joule	c) Electron volt	d) Watt
343. The unit of nuclear do	se given to a patient is		
a) <i>Fermi</i>	b) Rutherford	c) Curie	d) Roentgen
344. The least count of a st	op watch is 0.2 s. The time o	of 20 oscillations of a pend	ulum is measured to be 25 s.
The percentage error	in the measurement of time		
a) 8%	b) 1.8%	c) 0.8%	d) 0.1%
	sistance are same as those of	f Where <i>h</i> is the Pla	nck's constant and <i>e</i> is the
charge.	2	_	_
a) $\frac{h^2}{e^2}$	b) $\frac{h^2}{g}$	c) $\frac{h}{e^2}$	d) $\frac{h}{e}$
	C	· ·	e
	iula of magnetic permeabilit	·	12 F2 44 F2 2 4 - 23
a) $[M^0L^{-1}T]$	b) [M ⁰ L ² T ⁻¹]	c) $[M^0L^2T^{-1}A^2]$	d) $[MLT^{-2}A^{-2}]$
347. The dimensional form) MITT-?	12 xxx2m=2
a) $ML^{-1}T^{-2}$	b) M^0LT^{-2}	c) MLT^{-2}	d) ML^2T^{-2}
348. $ML^3T^{-1}Q^{-2}$ is dimens		2.70	D. W
a) Resistivity	b) Conductivity	c) Resistance	d) None of these
_	f the material of a body I the	-	_
	-	·	to be 5.00 \pm 0.05N. The weight
-	s measured to be 4.00 ± 0.03	on. Then the maximum po	ossible percentage error in
relative density is	12.4007	2.00/	D 70/
a) 11%	b) 10%	c) 9%	d) 7%

GPLUS EDUCATION PHONE NO: 8583042324 Page | 21

350. If the unit of length and force be increased four times, then the unit of energy is

351	a) Increased 4 times The physical quantity whi	b) Increased 8 times ch has the dimensional for	c) Increased 16 times	d) Decreased 16 times
	a) Surface tension Unit of surface tension is	b) Density	c) Solar constant	d) Compressibility
334.	a) Nm ⁻¹	b) Nm ⁻²	c) N^2m^{-1}	d) Nm ⁻³
353.	-	oint moving charge is $\vec{F} =$,	,
	Here, $q =$ electric charge	8 8		
	\vec{V} = velocity of the point c	harge		
	\vec{B} =magnetic field	G		
	The dimensions of \overrightarrow{B}			
	a) [MLT ⁻¹ A]	b) $[MLT^{-2}A^{-1}]$	c) $[MT^{-1}A^{-1}]$	d) None of these
354.	IF L , C and R denote the in C^2LR is	nductance, capacitance and	l resistance respectively, th	e dimensional formula for
		b) $[M^0L^0T^3I^0]$	c) $[M^{-1}L^{-2}T^6I^2]$	d) $[M^0L^0T^2I^0]$
355.	The dimensions of $e^2/4\pi s$	$\varepsilon_0 h c$, where e , ε_0 , h and c and	re electronic charge, electri	c permittivity, Planck's
	-	ght in vacuum respectively		
	a) $[M^0L^0T^0]$	b) [ML ⁰ T ⁰]	c) $[M^0LT^0]$	d) $[M^0L^0T^1]$
356.	•	-	$S = P^a D^b S^c$; where P is pre	ssure,
		ce tension. The value of a ,		1
	a) $-\frac{3}{2}, \frac{1}{2}, 1$	b) -1,-2,3	c) $\frac{1}{2}$, $-\frac{3}{2}$, $-\frac{1}{2}$	d) 1, 2, $\frac{1}{3}$
357.	Faraday is the unit of		2 2 2	3
	a) Charge	b) Emf	c) Mass	d) Energy
358.	If $X = A \times B$ and ΔX and ΔX	ΔA and ΔB are maximum a	bsolute errors in <i>X</i> , <i>A</i> and <i>E</i>	respectively, then the
	maximum relative error in	n X is given by		
250	a) $\Delta X = \Delta A + \Delta B$	b) $\Delta X = \Delta A - \Delta B$	c) $\frac{\Delta X}{X} = \frac{\Delta A}{A} - \frac{\Delta B}{B}$	$d)\frac{\Delta X}{X} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$
339.	a) $[M^2L^2T^{-2}]$	b) [MLT ⁻²]	c) [ML ² T ⁻²]	d) $[ML^2T^{-1}]$
360	,	,	Young's modulus of a wire	,
	Searle's method. In a parti 0.8 mm with an uncertain	icular reading, the student ty of \pm 0.05 mm at a load $_{ m 0.4}$	measures the extension in of exactly 1.0 kg. The studenty of \pm 0.01 mm. Take g = 9	the length of the wire to be at also measures the 9.8 ms^{-2} (exact). The
	a) $(2.0 \pm 0.3) \times 10^{11} \text{Nm}$	-2	b) $(2.0 \pm 0.2) \times 10^{11}$ Nm	-2
	c) $(2.0 \pm 0.1) \times 10^{11} \text{Nm}^{-1}$	-2	d) $(2.0 \pm 0.05) \times 10^{11}$ N	m ⁻²
361.	Tesla is a unit for measuri	ng		
	a) Magnetic moment		b) Magnetic induction	
	c) Magnetic intensity		d) Magnetic pole strength	
362.	The mass of a box is 2.3 g. and gold pieces is	Two gold pieces, each of n	nass 0.035 g, are placed in i	t. The total mass of the box
	a) 2.3 g	b) 2.4 g	c) 2.37 g	d) 2.370 g
363.	The dimensions of $\frac{a}{h}$ in the	e equation $p = \frac{a - t^2}{hr}$ where	e p is pressure, x is distance	e and t is time, are
	a) $[M^2LT^{-3}]$	b) [MT ⁻²]	c) [LT ⁻³]	d) $[ML^3T^{-1}]$
364.	If velocity v , acceleration v	A and force F are chosen a	fundamental quantities, th	en the dimensional formula
	•	terms of v , A and F would A		
	a) $FA^{-1}v$	b) Fv^3A^{-2}	c) Fv^2A^{-1}	d) $F^2v^2A^{-1}$

365. $[ML^2T^{-3}A^{-2}]$ is the dime	nsional formula of			
a) Electric resistance	b) Capacity	c) Electric potential	d) Specific resistance	
366. The dimensions of CV^2 n	natches with the dimension	ns of		
a) L^2I	b) L^2I^2	c) <i>LI</i> ²	d) $\frac{1}{II}$	
,			LI	
367. To determine the Young'	s modulus of a wire, the for	rmula is $Y = \frac{r}{A} \times \frac{L}{\Delta L}$; where	L = length, A = area of	
cross-section of the wire	, $\Delta L=$ change in length of t	he wire when stretched wi	th a force F . The conversion	
factor to change it from (CGS to MKS system is			
a) 1	b) 10	c) 0.1	d) 0.01	
368. If C and L denote capacit	=			
a) $M^0L^0T^0$	b) $M^0L^0T^2$,	d) MLT^2	
369. The potential energy of a	particle varies with distan	ce x from a fixed origin as θ	$U = \left(\frac{A\sqrt{X}}{x+B}\right)$; where A and B	
are constants. The dimer	nsions of AB are		W /	
a) $[ML^{5/2}T^{-2}]$	b) $[ML^2T^{-2}]$	c) $[M^{3/2}L^{3/2}T^{-2}]$	d) $[ML^{7/2}T^{-2}]$	
370. Dimensional formula for		, []	, r j	
a) L^2MT^{-2}	b) $L^{-1}MT^{-2}$	c) L^2MT^{-3}	d) LMT^{-2}	
371. Dimensions of <i>CR</i> are the	,	,	,	
a) Frequency	b) Energy	c) Time period	d) Current	
372. The dimensions of intera	, .,		,	
a) <i>MT</i> ⁻²	b) <i>MLT</i> ⁻¹	c) MLT^{-2}	d) $ML^{-1}T^{-1}$	
373. The ratio of 1 kWh to 1 M	MeV is			
a) 2.25×10^{17}	b) 2.25×10^{19}	c) 2.25×10^{23}	d) $2.25 \times 4.4 \times 10^9$	
374. The physical quantity tha	at has no dimensions is			
a) Angular Velocity	b) Linear momentum	c) Angular momentum	d) Strain	
375. Out of the following pairs	s, which one does not have	identical dimensions?		
a) Angular momentum a	nd Planck's constant	b) Impulse and momentu	ım	
c) Moment of inertia and	l moment of a force	d) Work and torque		
376. A physical quantity is giv	ven by $X = M^a L^b T^c$. The pe	rcentage error in measurer	ment of M , L and T are α , β	
and γ respectively. The n	naximum percentage error			
a) $a\alpha + b\beta + c\gamma$	b) $a\alpha + b\beta - c\gamma$	c) $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma}$	d) None of these	
377. [ML ⁻² T ⁻²] represents di		μ ρ γ	quantities?	
a) Energy	b) pressure	c) Torque	d) Pressure gradient	
378. Which of the following page 378.		*	u) Fressure gradient	
a) Stress and pressure	an's does not have similar t	b) Angle and strain		
c) Tension and surface to	encion	d) Planck's constant and	angular momentum	
379. Density of liquid in CGS s				
a) 0.625	b) 0.0625	c) 0.00625	d) 625	
			,	
380. Taking frequency f , velocity v and density ρ to be the fundamental quantities, then the dimensional formula for momentum will be				
a) $[\rho v^4 f^{-3}]$	b) $[\rho v^3 f^{-1}]$	c) $[\rho v f^2]$	d) $[\rho^2 v^2 f^2]$	
381. Oersted is a unit of	د ۱ (۱۹۰	و) [۵۰]]	م) [۲ ۲]	
a) Dip	b) Magnetic intensity	c) Magnetic moment	d) Pole strength	
382. One nanometre is equal to		-,	,	
a) 10 ⁹ mm	b) $10^{-6}cm$	c) $10^{-7}cm$	d) $10^{-9}cm$	
383. If the length of rod <i>A</i> is 3			,	
by			0	
a) $0.94 \pm 0.00 \ cm$	b) $0.94 \pm 0.01 cm$	c) $0.94 \pm 0.02 \ cm$	d) $0.94 \pm 0.005 cm$	

384.		l time (T) are assumed to b	oe fundamental units, then	the dimensional formula of
	the mass will be			
	a) $FL^{-1}T^2$	b) $FL^{-1}T^{-2}$	c) $FL^{-1}T^{-1}$	d) FL^2T^2
385.	The dimensions of surface	tension are		
	a) $ML^{-1}T^{-2}$	b) <i>MLT</i> ⁻²	c) $ML^{-1}T^{-1}$	d) MT^{-2}
386.	Unit of power is			
	a) Kilowatt	b) Kilowatt-hour	c) Dyne	d) Joule
387.	Which of the following is d	-	, ,	,,
	a) Pressure = Energy per			
	b) Pressure = Energy per			
	c) Pressure = Force per un			
	-	per unit volume per unit t	ime	
388	=	= =	the significant figures into a	account the area of the
500.	rectangle is	c o.or in and 12mi taking t	ine significant figures into a	icedum, the area of the
	a) 7.2 m ²	b) 72.1 m ²	c) 72.00 m ²	d) 72.12 m ²
200	•	•	C) 72.00 III	uj /2.12 III
389.	The unit of angular acceler) 1 –2	n 1 –1 <i>u</i>
200	a) $N kg^{-1}$	b) ms ⁻²	c) $rad \ s^{-2}$	d) $m kg^{-1}K$
390.		-	e is 100 s, what will be the	
	a) 1 kg	b) 100 kg	c) 1000 kg	d) 10000 kg
391.			cover a distance of 1 mm or	
			er, it is found that the screv	
		The state of the s	vire, a student notes the ma	_
	and the number of circular	r scale divisions in line witl	h the main scale as 35. The	diameter of the wire is
	a) 3.73 mm	b) 3.67 mm	c) 3.38 mm	d) 3.32 mm
392.	$[ML^3T^{-1}Q^{-2}]$ is the dimen	sional formula of		
	a) Resistance	b) Resistivity	c) Conductance	d) Conductivity
393.	The damping force of an o	scillating particle is observ	red to be proportional to ve	locity. The constant of
	proportionality can be me		AHON .	•
	a) $\text{Kg } s^{-1}$	b) Kg s	c) Kg ms ⁻¹	d) $\text{Kg m}^{-1}\text{s}^{-1}$
394.	, 0		If percentage errors in the	
		ectively, then total, percen		
	-	_	c) $(\alpha a - \beta b - \gamma c)\%$	d) 0%
305	The value of $0.99-0.989$ is		ε) (αα βυ γε)/0	u) 0 70
373.	a) 0.001	b) 0.010× 10 ⁻¹	c) 0.01×10^{-1}	d) 0.1×10^{-3}
206	•	=	c) 0.01 × 10	u) 0.1 × 10
390.	The dimensional formula		-> [M(0) 2m-1]	J) [M(); 2m]
207	a) $[M^0L^{-2}T]$	b) $[M^0L^{-2}T^{-1}]$	c) $[M^0L^2T^{-1}]$	d) [M ⁰ L ² T]
397.		essed as a derived quantity	in terms of any of the follo	owing
	a) Length and mass		b) Mass and time	
	c) Length, mass and time		d) None of these	
398.	Unit of stress is			_
	a) <i>N/m</i>	b) $N-m$	c) N/m^2	d) $N - m^2$
399.	If $f = x^2$, then the relative	e error in f is		
	a) $\frac{2\Delta x}{x}$	b) $\frac{(\Delta x)^2}{x}$	c) $\frac{\Delta x}{x}$	d) $(\Delta x)^2$
	$\frac{x}{x}$	<u>x</u>	$\frac{C}{x}$	$(\Delta \lambda)$
400.	If the velocity of light (c) ,	$\operatorname{gravitational}$ constant (G) :	and Planck's constant (h) a	re chosen as fundamental
	units, then the dimensions	s of mass in new system is		
	a) $c^{1/2}G^{1/2}h^{1/2}$	b) $c^{1/2}G^{1/2}h^{-1/2}$	c) $c^{1/2}G^{-1/2}h^{1/2}$	d) $c^{-1/2}G^{1/2}h^{1/2}$
401.	The dimensions of resistiv	rity in terms of M, L, T and	Q where Q stands for the d	limensions of charge, is
	a) $ML^3T^{-1}Q^{-2}$	b) $ML^3T^{-2}Q^{-1}$	c) $ML^2T^{-1}Q^{-1}$	d) $MLT^{-1}Q^{-1}$
	-	-	- •	- •

402. A spectrometer gives the following reading when use	ed to measure the angle of	a prism				
Main scale reading : 58.5 degree	Main scale reading : 58.5 degree					
Vernier scale reading : 09 divisions						
Given that 1 division on main scale corresponds to 0	.5 degree. Total divisions o	n the vernier scale is 30				
and match with 29 divisions of the main scale. The a	ngle of the prism from the a	above data				
a) 58.59 <i>Degree</i> b) 58.77 <i>Degree</i>	c) 58.65 <i>Degree</i>	d) 59 <i>Degree</i>				
403. Ampere-hour is the unit of						
a) Quantity of charge b) Potential	c) Energy	d) Current				
404. A physical quantity u is given by the relation $u = \frac{B^2}{2\mu_0}$						
here, $B =$ magnetic field strength						
μ ₀ =magnetic permeability of vacuum. a) Energy b) Energy density	c) Pressure	d) None of those				
a) Energy b) Energy density 405. Which does not have the same unit as others	c) riessure	d) None of these				
	c) eV	d) <i>J-sec</i>				
a) <i>Watt-sec</i> b) <i>Kilowatt-hour</i> 406. The radius of a wire is 0.24 mm. Then its area of cross	•	* *				
consideration is	ss section by taking signific	ant figures into				
a) 0.1 mm ² b) 0.2 mm ²	c) 0.18 mm ²	d) 0.180 mm ²				
407. The expression $[ML^{-1}T^{-1}]$ represents	C) 0.10 mm	u) 0.100 mm				
a) Momentum	b) Force					
c) Pressure	d) Coefficient of viscosity					
408. In an experiment the angles are required to be meas	•	20 divisions of the main				
scale exactly coincide with the 30 divisions of the ve	_					
half-a-degree (= 0.5°), then the least count of the ins		invision of the main scale is				
a) One minute b) Half minute	c) One degree	d) Half degree				
409. The length, breadth and thickness of a block is measured.	-	, ,				
error in the measurement of volume is	area to be so em, are em an	a 1100 cm, The percentage				
a) 0.8 % b) 8%	c) 10%	d) 12.5%				
410. Given that v is speed, r is the radius and g is the acce		-				
dimensionless	and the Branney.					
a) v^2/rg b) v^2r/g	c) v^2g/r	d) $v^2 rg$				
411. The focal length of a mirror is given by $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ wh		, ,				
,	ere a ana v represent objec	et and image distances				
respectively. The maximum relative error in f is	A.C. 1 1					
a) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v}$	b) $\frac{\Delta f}{f} = \frac{1}{\Delta u/u} + \frac{1}{\Delta v/v}$					
,	<i>j</i> = <i>j j</i> -	Λ				
c) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} - \frac{\Delta(u+v)}{u+v}$	d) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u}{u+v}$	$+\frac{\Delta v}{c}$				
,	•					
412. The equation of alternating current is $I = I_0 e^{-t/CR}$, v	where t is time, C is capacit	ance and R is resistance of				
coil, then the dimensions of CR is	> 5> 60 x 0 m3	1) NI C.1				
a) [MLT ⁻¹] b) [M ⁰ LT]	c) $[M^0L^0T]$	d) None of these				
413. The refractive index of a material is given by the equ	ation $n = \frac{A+B}{\lambda^2}$, where A and	d <i>B</i> are constant. The				
dimensional formula for B is						
a) $[M^0L^2T^{-1}]$ b) $[M^0L^{-2}T^0]$	c) $[M^0L^2T^{-2}]$	d) $[M^0L^2T^0]$				
414. There are atomic clocks capable of measuring time v	vith an accuracy of 1 part ir	n 10 ¹¹ . If two such clocks				
are operated with precision, then after running for 5	000 years, these will recor	d				
a) A difference of nearly 1 s	b) A difference of 1 day					
c) A difference of $10^{11}\mathrm{s}$	d) A difference of 1 year					
415. R , L and C represent the physical quantities resistant	ce, inductance and capacita	nce respectively. Which				
one of the following combination has dimension of fi	requency?					

4	_		_
a) $\frac{1}{\sqrt{RC}}$	b) $\frac{R}{I}$	c) $\frac{1}{LC}$	d) <u>C</u>
VILO	of light is $0.00006 m$. It is equ	20	L
a) 6 micron	b) 60 <i>micron</i>	c) 600 micron	d) 0.6 micron
417. Dimensions of peri	-	cj ooo mieron	aj olo iliteroli
a) $A^{-2}M^1L^1T^{-2}$	b) <i>MLT</i> ⁻²	c) $ML^{0}T^{-1}$	d) $A^{-1}MLT^2$
•	,	•	ving, the dimensions of Li^2 are
a) ML^2T^{-2}	aucturios or an inductor timous	b) Not expressible in	_
c) MLT^{-2}		d) $M^2L^2T^{-2}$	
419. Ins is defined as		a, 1.1 L 1	
	lock of 1650763.73 oscillation	ıs	
-	lock of 6521389.63 oscillation		
	lock of 1650763.73 oscillation		
	lock of 9192631770 oscillation		
-	$0.5 \ gm/cc$ in the CGS system		g value in MKS units is
a) 500	b) 5	c) 0.5	d) 5000
421. Unit of moment of	•	c) 010	aj 5000
a) $kg \times cm^2$	b) k <i>g/cm</i> ²	c) $kg \times m^2$	d) Joule \times m
, ,	ror in the above problem is	<i>c) </i>	, ,
a) 7%	b) 5.95%	c) 8.95%	d) 9.85%
•	the same dimensions as	-y / c	
a) Coefficient of vis		b) Surface tension	
c) Frequency	,	d) Impulse	
40.4	$4^3R^{\frac{1}{2}}$	-	
A physical quantity	P is given by $P = \frac{AB^2}{C^{-4}R^{\frac{3}{2}}}$. The	quantity which brings in th	ne maximum percentage error
in P is	C -D2		
a) <i>A</i>	b) <i>B</i>	c) C	d) <i>D</i>
425. The surface tension	b) <i>B</i> n is $T = \frac{F}{I}$, then the dimension	s of surface tension are	,
a) [MLT ⁻²]	b) [MT ⁻²]	c) $[M^0L^0T^0]$	d) None of these
,	al formula of thermal conduct	, <u> </u>	d) None of these
a) [MLT ⁻¹ θ^{-1}]	al formula of thermal conduct b) [MLT ⁻³ θ ⁻¹]	c) $[M^2LT^{-3}\theta^{-2}]$	d) $[ML^2T^{-2}\theta]$
427. Universal time is b	·	C) [M-T1 -A -]	α) [ML-1 -θ]
a) Rotation of the		b) Earth's orbital mo	tion around the Cun
c) Vibrations of ce		d) Oscillations of qua	
		-	ions of a and b respectively are
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ b) $\begin{bmatrix} LT^{-1} \end{bmatrix}$ and $\begin{bmatrix} LT^{-4} \end{bmatrix}$		$[T^{-1}]$ d) [MLT ⁻¹] and [MLT ⁻⁴]
•	hich has different dimensions		j uj [MLI j anu [MLI j
	nt and angular momentum	b) Impulse and linear	momontum
	itum and frequency	d) Pressure and Your	
	0 ± 5) volt and current $I = (1)$		_
a) 5.2%	b) 25%	c) 7%	d) 10%
-	n are same as (h –Planck's cor		uj 1070
a) h/e	b) h^2/e	c) h/e^2	d) $h^2 e^2$
			,
a) 4, 4, 2	mber of significant figures for t b) 5, 1, 2	c) 5, 1, 5	d) 5, 5, 2
•	ە رى he lengths of a mean solar day	•	
a) 1 min	b) 4 min	c) 15 min	d) 56 min
a) 1 mm	•	cj 15 mm	uj so iiiii

a) Charge	b) Potential difference	c) Momentum	d) Energy	
435. The measured mass and v	volume of a body are 23.42	g and 4.9 cm ³ respectively	with possible error 0.01 g	
and 0.1 cm ³ . The maximum error in density is nearly				
a) 0.2%	b) 2%	c) 5%	d) 10%	
436. In the relation $y = a \cos($	$\omega t - kx$), the dimensional	formula for k is		
a) $[M^0L^{-1}T^{-1}]$	b) $[M^0LT^{-1}]$	c) $[M^0L^{-1}T^0]$	d) $[M^0LT]$	
437. A quantity X is given by ε	$_{0}L\frac{\Delta V}{\Delta t}$, where ε_{0} is the perm	ittivity of free space, $\it L$ is a l	ength, ΔV is a potential	
difference and Δt is a time	e interval. The dimensiona	l formula for X is the same	as that of	
a) Electrical resistance	b) Electric charge	c) Electric voltage	d) Electric current	
438. Dimension of electric cur	rent is			
a) $[M^0L^0T^{-1}Q]$	b) $[ML^2T^{-1}Q]$	c) $[M^2LT^{-1}Q]$	d) $[M^2L^2T^{-1}Q]$	
439. The velocity of a particle	(v) at an instant t is given $\mathfrak k$	by $v = at + bt^2$ the dimens	\mathbf{b} ion of \mathbf{b} is	
a) <i>L</i>	b) <i>LT</i> ⁻¹	c) LT ⁻ 2	d) LT^{-3}	
440. The dimensions of emf in	MKS is		·	
a) $[ML^{-1}T^{-2}Q^{-2}]$	b) $[ML^{-2}T^{-2}Q^{-2}]$	c) $[MLT^{-2}Q^{-1}]$	d) $[ML^2T^{-2}Q^{-1}]$	
441. Number of particles is given	$\text{yen by } n = -D \frac{n_2 - n_1}{n_2 - n_1} \text{ crossin}$	ng a unit area perpendicula	r to X-axis in unit time.	
	ber of particles per unit vol	iume for the value of x mea	int to x_2 and x_1 . Find	
dimensions of <i>D</i> called as) M01m-3	12.140.12m-1	
a) M^0LT^2		c) M^0LT^{-3}	d) $M^0L^2T^{-1}$	
442. If the velocity v (is cms ⁻¹)) of a particle is given in ter	ms of t (in second) by the i	relation $v = at + \frac{b}{t+c}$	
then, the dimensions of a	, b and c are			
a b c	31			
a) [L]	b) $[L^2]$ [T] $[LT^{-2}]$	c) [LT ²] [LT] [L]	d) $[LT^{-2}]$ $[L]$ $[T]$	
443. A current of 234 A flows	in a resistance of 11.11111	1Ω . The potential difference	ce across the given	
resistance with due regar	d for significant figure is			
a) 26.000 V	b) 26.00 V	c) 26.0 V	d) 26 V	
444. The dimensions of Planck	s's constant is same as that	of		
a) Angular momentum		b) Linear momentum		
c) Work		d) Coefficient of viscosity		
445. Solar constant is defined	as energy received by earth	n per cm² per minute. The c	limensions of solar	
constant are				
a) [ML ² T ⁻³]	b) $[M^2L^0T^{-1}]$	c) $[ML^0T^{-3}]$	d) $[MLT^{-2}]$	
446. Dimensional formula for	volume elasticity is			
a) $M^1L^{-2}T^{-2}$	b) $M^1L^{-3}T^{-2}$	c) $M^1L^2T^{-2}$	d) $M^1L^{-1}T^{-2}$	
447. If p represents radiation	pressure, ${\cal C}$ represents spe ϵ	ed of light and q represents	radiation energy striking a	
unit area per second, the	n non-zero integers a,b and	l c are such that $p^a q^b C^c$ is	dimensionless, then	
a) $a = 1, b = 1, c = -1$	_	b) $a = 1, b = -1, c = 1$		
c) $a = -1, b = 1, c = 1$		d) $a = 1, b = 1, c = 1$		
448. The unit of reactance is				
a) <i>Ohm</i>	b) <i>Volt</i>	c) Mho	d) Newton	
449. A wire has a mass 0.3 ± 0	0.003 g, radius 0.5 ± 0.005	mm and length 6 \pm 0.06 c	m. The maximum	
percentage error in the m	neasurement of its density i	S		
a) 1	b) 2	c) 3	d) 4	
450. A highly rigid cubical bloo	•			
	ow modulus of rigidity η su	= :		
	• • •	n a horizontal surface. A sm	- · ·	

oscillations, the time period o which is given by

perpendicular to one of the side faces of A. After the force is withdrawn, block A executes small

				opius zaacation
	a) $2\pi\sqrt{M\eta L}$	b) $2\pi \sqrt{\frac{M\eta}{L}}$	c) $2\pi \sqrt{\frac{ML}{\eta}}$	d) $2\pi \sqrt{\frac{M}{\eta L}}$
451.	Dimensions of coefficient			
	a) ML^2T^{-2}	b) ML^2T^{-1}	c) $ML^{-1}T^{-1}$	d) <i>MLT</i>
452.	Which physical quantities			
	a) Force and power	b) Torque and energy	c) Torque and power	d) Force and torque
453.		-	esistance respectively, ther	n which of the following
	does not represent dimen			
	a) $\frac{1}{RC}$	b) $\frac{R}{L}$	c) $\frac{1}{\sqrt{LC}}$	d) $\frac{C}{I}$
	110	ь	V DO	L
454.		are the units of strength of		1) NI A = 2 = -2
455	a) NA m ⁻¹	b) NA m	c) NA ⁻¹ m ⁻¹	d) $NA^{-2} m^{-2}$
455.			d to measure the diameter of	or a wire
	Main scale reading: 0 mm			
	Circular scale reading: 52		ivisions on the singular sac	l _a
	The diameter of wire from	-	ivisions on the circular sca	ie.
	a) $0.52 cm$	b) 0.052 <i>cm</i>	c) 0.026 <i>cm</i>	d) 0.005 <i>cm</i>
156	•		rsal gravitational constant (•
1 30.	0. , ,	' '	l gravitational constant in t	• •
	Planck's constant (h) is	The difficultions of difficultiversa	i gravitational constant in t	ile difficiisional formula of
	a) Zero	b) -1	5	d) 1
	a) Lero	b) -1	c) $\frac{5}{3}$	u) I
457.	A thin copper wire of leng	th <i>l metre</i> increases in len	gth by 2% when heated thr	ough $10^{\circ}C$. What is the
	= =		neet of length <i>l metre</i> is hea	
	a) 4%	b) 8%	c) 16%	d) None of the above
458.	Which one of the followin	g is not a fundamental SI ui	nit?	
	a) Ampere	b) Candela	c) Newton	d) Kelvin
459.	Find the dimensions of ele	ectric permittivity		
	a) $[A^2M^{-1}L^{-3}T^4]$	b) $[A^2M^{-1}L^{-3}T^0]$	c) $[AM^{-1}L^{-3}T^4]$	d) $[A^2M^0L^{-3}T^4]$
460.	The respective number of	significant figures for the r	numbers 23.02310.0003 an	10^{-3} are
	a) 5, 1, 2	b) 5, 1, 5	c) 5, 5, 2	d) 4, 4, 2
461.	A body travels uniformly	a distance of (13.8 \pm 0.2) r	n in a time (4.0 \pm 0.3) s. Th	e velocity of the body
	within error limits is			
	• •	• •	c) $(3.45 \pm 0.4) ms^{-1}$	• •
462.	-	of radius 'a' moving in a m	edium with velocity $'v'$ is g	iven by $F = 6\pi \eta a v$. The
	dimensions of η are			
	a) $ML^{-1}T^{-1}$	b) <i>MT</i> ⁻¹	c) MLT^{-2}	d) ML^{-3}
463.	Given that $2l\sqrt{\frac{m}{T}}$, where l	is the length of a string of li	near density m , under tens	sion T ha the same
	dimensional formula as th	at of		
	a) Mass	b) Time	c) Length	d) Mole
464.	In C.G.S. system the magni	itude of the force is $100 \ dy$	ne. In another system wher	e fundamental physical
	quantities are kilogram, n	netre and minute, the magr	nitude of the force is	
	a) 0.036	b) 0.36	c) 3.6	d) 36
465.	= = =		own to an accuracy of 1 mi	=
	-	-	lations using a clock of 0.1	s resolution. What is the
	accuracy in the determine	-		
	a) 0.2%	b) 0.5%	c) 0.1%	d) 2%

	Which one of the following	ng pairs of quantities and th	leir units is a proper match	
	a) Electric field-coulomb	• •	b) Magnetic flux-weber	
	c) Power-farad	,	d) Capacitance- <i>henry</i>	
467.		nits denotes the dimensions	SML^2/Q^2 , where Q denotes	the electric charge
	a) Henry (H)	b) H/m ²	c) Weber (Wb)	d) Wb/m ²
468.	The dimensional formula			,
100.	a) $[MT^{-2}A^{-1}]$	b) [ML ² T ⁻¹ A ⁻²]	c) $[MT^{-2}A^{-2}]$	d) $[MT^{-1}A^{-2}]$
469.	The dimensions of stress	, .	9) []	, []
107.	a) Force	b) Pressure	c) Work	d) $\frac{1}{\text{Pressure}}$
470.	If <i>C</i> the restoring couple p	per unit radian twist and $\it I$ i	s the moment of inertia, the	
	representation of $2\pi \sqrt{\frac{I}{c}}$ w	vill be		
	a) $[M^0L^0T^{-1}]$	b) [M ⁰ L ⁰ T]	c) $[M^0LT^{-1}]$	d) $[M L^2 T^{-2}]$
471.	,	,	experiment. The diameter o	,
			50 divisions on the circular	
			20 divisions. If the measur	-
		relative percentage error in		
	a) 0.9%	b) 2.4%	c) 3.1%	d) 4.2%
472		ng does not have the same d	•	uj 11270
1, 2,	a) Work and energy	ig does not have the same t	b) Angle and strain	
	c) Relative density and re	efractive index	d) Planck constant and en	erov
473	Dimensional formula of h		a) I faireix constant and en	C18 <i>J</i>
			c) $M^0L^0T^{-2}$	d) None of these
474.	Given that $\alpha = A \sin \left[\frac{2\pi}{3} \right]$	t) (at w)] whom word w	c) $M^0L^0T^{-2}$ are measured in metre. Wh	sigh of the following
.,		$-\int (ct - x) \int where, y and x$	are measured in metre, wi	nen of the following
	statements is true?			
	a) The unit of λ is same as	s that of x and A	b) The unit of λ is same as d) The unit of $(ct - x)$ is s	that of x but not of A
	c) The unit of c is same as	s that of $\frac{2\pi}{\lambda}$	d) The unit of $(ct - x)$ is s	same as that of $\frac{2\pi}{\lambda}$
			ısual. But a new unit of mas	
	This new unit of mass is e			
176	,	b) 1.5×10^{10} kg	c) 6.67×10^{-11} kg	d) 6.67×10^{-8} kg
4/6.	The dimensional formula		c) 6.67×10^{-11} kg	d) 6.67×10^{-8} kg
4/6.	The dimensional formula a) $[MLT^{-2}K^{-1}]$	for entropy is		
	a) $[MLT^{-2}K^{-1}]$	for entropy is b) $[ML^2T^{-2}]$	c) $6.67 \times 10^{-11} \text{kg}$ c) $[\text{ML}^2 \text{T}^{-2} \text{K}^{-1}]$	d) 6.67×10^{-8} kg d) $[ML^{-2}T^{-2}K^{-1}]$
	a) $[MLT^{-2}K^{-1}]$ Which of the following re	for entropy is b) $[ML^2T^{-2}]$ presents a <i>volt</i>	c) $[ML^2T^{-2}K^{-1}]$	d) [ML ⁻² T ⁻² K ⁻¹]
477.	 a) [MLT⁻²K⁻¹] Which of the following re a) Joule/second 	for entropy is b) [ML ² T ⁻²] presents a <i>volt</i> b) <i>Watt/ampere</i>	c) [ML ² T ⁻² K ⁻¹] c) Watt/coulomb	
477.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{V^2})$.	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V - b) = constant. The un$	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is	d) [ML ⁻² T ⁻² K ⁻¹] d) <i>Coulomb/joule</i>
477. 478.	a) $[MLT^{-2}K^{-1}]$ Which of the following re a) $Joule/second$ The equation $(P + \frac{a}{V^2})$. (a) $Dyne \times cm^5$	for entropy is b) $[ML^2T^{-2}]$ presents a <i>volt</i> b) $Watt/ampere$ $(V - b) = constant$. The un b) $Dyne \times cm^4$	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is	d) [ML ⁻² T ⁻² K ⁻¹]
477. 478.	a) $[MLT^{-2}K^{-1}]$ Which of the following re a) $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $(V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is	c) [ML ² T ⁻² K ⁻¹] c) Watt/coulomb it of a is c) Dyne × cm ³	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$
477. 478. 479.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/sec^2)$	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$
477. 478. 479.	a) $[MLT^{-2}K^{-1}]$ Which of the following re a) $Joule/second$ The equation $(P + \frac{a}{V^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V-b)=constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ nula of CV^2 is
477. 478. 479. 480.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ mula of CV^2 is d) $[ML^2T^{-2}A^0]$
477. 478. 479. 480.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a	for entropy is b) $[ML^2T^{-2}]$ presents a <i>volt</i> b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ mula of CV^2 is d) $[ML^2T^{-2}A^0]$
477. 478. 479. 480.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a maximum possible percential $[ML^{-3}TA]$	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00 ntage error in its density is	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form c) $[ML^1T^{-2}A^{-1}]$ ± 0.05 kg and 1.00 ± 0.05	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ mula of CV^2 is d) $[ML^2T^{-2}A^0]$ 5 m ³ respectively. Then the
477. 478. 479. 480. 481.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a maximum possible perceal $g(cm)$	for entropy is b) $[ML^2T^{-2}]$ presents a <i>volt</i> b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00 intage error in its density is b) 3%	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form c) $[ML^1T^{-2}A^{-1}]$ ± 0.05 kg and 1.00 ± 0.05 c) 10%	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ nula of CV^2 is d) $[ML^2T^{-2}A^0]$ 5 m ³ respectively. Then the
477. 478. 479. 480. 481.	a) $[MLT^{-2}K^{-1}]$ Which of the following real of the following real of the equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a maximum possible perceal $g(cm)$	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V-b)=constant$. The un b) $Dyne\times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00 intage error in its density is b) 3% t figures in all the given nur	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form c) $[ML^1T^{-2}A^{-1}]$ ± 0.05 kg and 1.00 ± 0.05 c) 10% mbers 25.12, 2009, 4.156 ar	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ nula of CV^2 is d) $[ML^2T^{-2}A^0]$ 5 m ³ respectively. Then the
477. 478. 479. 480. 481.	a) $[MLT^{-2}K^{-1}]$ Which of the following real $Joule/second$ The equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a maximum possible perceal 6% The number of significants a) 1	for entropy is b) $[ML^2T^{-2}]$ presents a <i>volt</i> b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00 intage error in its density is b) 3% t figures in all the given numb) 2	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form c) $[ML^1T^{-2}A^{-1}]$ ± 0.05 kg and 1.00 ± 0.05 c) 10%	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ nula of CV^2 is d) $[ML^2T^{-2}A^0]$ 5 m ³ respectively. Then the
477. 478. 479. 480. 481.	a) $[MLT^{-2}K^{-1}]$ Which of the following real of the following real of the equation $(P + \frac{a}{v^2})$. (a) $Dyne \times cm^5$ The unit of potential energy $g(cm/\sec^2)$ If C be the capacitance and a) $[ML^{-3}TA]$ The mass and volume of a maximum possible perceal $g(cm)$	for entropy is b) $[ML^2T^{-2}]$ presents a $volt$ b) $Watt/ampere$ $V - b) = constant$. The un b) $Dyne \times cm^4$ rgy is b) $g(cm/sec)^2$ d V be the electric potentia b) $[K^0LT^{-2}A^0]$ a body are found to be 5.00 intage error in its density is b) 3% t figures in all the given nur b) 2 f free space ε_0 is	c) $[ML^2T^{-2}K^{-1}]$ c) $Watt/coulomb$ it of a is c) $Dyne \times cm^3$ c) $g(cm^2/sec)$ l, then the dimensional form c) $[ML^1T^{-2}A^{-1}]$ ± 0.05 kg and 1.00 ± 0.05 c) 10% mbers 25.12, 2009, 4.156 ar	d) $[ML^{-2}T^{-2}K^{-1}]$ d) $Coulomb/joule$ d) $Dyne \times cm^2$ d) $g(cm/sec)$ mula of CV^2 is d) $[ML^2T^{-2}A^0]$ 5 m ³ respectively. Then the d) 5% nd 1.217 × 10 ⁻⁴ is d) 4

c) Coulomb ² /(newton -	-	d) Coulomb ² /newton —	
484. If the units of mass, leng	th and time are doubled, u		vill be
a) Doubled		b) Tripled	1
c) Quadrupled 485, 1kWh =		d) 8 times the original va	alue
	h) 26 v 105 I	a) 1000 I	4) 2600 1
a) 1000 <i>W</i> 486. A wire has a mass 0.3 ±	b) $36 \times 10^5 J$	c) $1000 J$	d) 3600 <i>J</i>
error in the measuremen	nt of its density is	-	
a) 1	b) 2	c) 3	d) 4
487. Coefficient of thermal co			2-2- 22-
a) $[MLT^{-3}K^{-1}]$	b) [ML ³ T ³ K ²]	c) $[ML^3T^{-3}K^{-2}]$	d) $[M^2L^3T^{-3}K^2]$
488. If C , R , L and I denote can		ice and electric current res	pectively, the quantities
having the same dimens	ions of time are		
(1) <i>CR</i>			
(2) $\frac{L}{R}$			
$(3)\sqrt{LC}$			
$(4) LI^2$			
a) (1) and (2) only			
b) (1) and (3) only			
c) (1) and (4) only			
d) (1), (2) and (3) only			
489. In the relation $P = \frac{\alpha}{R} e^{\frac{\alpha Z}{R\theta}}$	Pic proceure 7 is the dist	ance k is Roltzmann's cons	tant and A is the
۴	741		tant and o is the
-	sional formula of β will be		12 F140 x2m=11
a) $[M^0L^2T^0]$	b) $[M^1L^2T^1]$	c) $[M^1L^0T^{-1}]$	d) $[M^0L^2T^{-1}]$
490. Which physical quantitie		c) Torque and power	d) Farga and targue
a) Force and power 491. In the equation $y = a \sin y$	b) Torque and energy $(\omega t + kx)$ the dimension		d) Force and torque
a) $[M^0L^0T^{-1}]$	b) $[M^0LT^{-1}]$	c) [ML ⁰ T ⁰]	d) $[M^0L^{-1}T^0]$
492. Resistance of a given win	,	,	, ,
	-	=	nd the voltage difference are
	ne value of resistance of the		Ö
a) 6%	b) Zero	c) 1%	d) 3%
493. Electric displacement is	given by $D = \varepsilon E$,	•	•
Here, $\varepsilon=$ electric permit	tivity		
E = electric field strengt	h		
The dimensions of electr	_		
a) [ML ^{–2} TA]	b) [L ⁻² T ⁻¹ A]	c) $[L^{-2}TA]$	d) None of these
494. The dimension of k in the	e equation $W = \frac{1}{2}kx^2$ is		
a) $[ML^0T^{-2}]$	b) [M ⁰ LT ⁻¹]	c) $[MLT^{-2}]$	d) $[ML^0T^{-1}]$
495. In $S = a + bt + ct^2$. S is	measured in metre and t in	n $second$. The unit of c is	
a) None	b) <i>m</i>	c) ms^{-1}	d) ms^{-2}
496. Dimensional formula for	_		
a) $[M^{-1}L^2T^{-2}]$	b) $[M^0L^0T^0]$	c) $[M^{-1}L^3T^{-2}]$	d) $[M^{-1}L^3T^{-1}]$
497. Select the pair whose di		_	_
a) Pressure and stress	b) Stress and strain	c) Pressure and force	d) Power and force
498. A resistor of 10 k Ω having	-		resistor of 20kΩ having
tolerance 20%. The toler	rance of the combination w	all be approximately	

	a) 10%	b) 13%	c) 17%	d) 20%	
	A. R and L represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency				
	•		<u>_</u>	Ţ.	
	a) $\frac{R}{L}$	b) $\frac{L}{R}$	c) $\sqrt{\frac{R}{L}}$	d) $\sqrt{\frac{L}{R}}$	
500.	The unit of specific resista	nce is	·	·	
	a) Ohm/cm^2	b) Ohm/cm	c) <i>0hm - cm</i>	d) $(0hm - cm)^{-1}$	
501.	If <i>C</i> is the capacitance and	<i>V</i> is the potential, the dime	ensional formula for CV^2 is		
	a) $[ML^2T^{-1}]$	b) $[ML^{-2}T^{-3}]$	c) $[ML^2 T^{-2}]$	d) $[ML^{-2}T^{-2}]$	
502.	The equation of state of so	me gases can be expressed	$\operatorname{las}\left(P + \frac{a}{V^2}\right)(V - b) = RT$. Here P is the pressure, V	
	is the volume, <i>T</i> is the absolute	olute temperature and a, b ,	R are constants. The dime	ensions of 'a' are	
	a) ML^5T^{-2}	b) $ML^{-1}T^{-2}$	c) $M^0L^3T^0$	d) $M^0L^6T^0$	
503.	With the usual notations, t	the following equation			
	$S_t = u + \frac{1}{2}a(2t - 1)$ is	0 1			
	a) Only numerically correct	rt	b) Only dimensionally cor	rect	
	c) Both numerically and d		d) Neither numerically no		
504	<i>Volt/metre</i> is the unit of	menorany correct	aj recisios numericany no	i annonsionally correct	
5011	a) Potential	b) Work	c) Force	d) Electric intensity	
505.	Length cannot be measure		<i>-,</i>	,	
	a) Fermi	b) <i>Debye</i>	c) Micron	d) Light year	
506.	Henry/ohm can be expres		.,)0)	
500.	a) Second	b) Coulomb	c) Mho	d) Metre	
507.	1 a.m.u. is equivalent to	s) doutemis	<i>c)</i> 1.11.0	uj Piovi o	
	a) $1.6 \times 10^{-27} kg$	b) 934 <i>MeV</i>	c) $1.6 \times 10^{-24} \ gm$	d) All above	
508.	The unit of Stefan's consta	,	o) is the give	,	
	a) $W m^{-2} K^{-1}$	b) $W m^2 K^{-4}$	c) $W m^{-2} K^{-4}$	d) $W m^{-2} K^4$	
509.	The dimensions of time co	nstant are	WILLIA!	,	
	a) $[M^0L^0T^0]$	b) [M ⁰ L ⁰ T]	c) [MLT]	d) None of these	
510.	,	, L	epends upon power p of its		
	_		the correct set of values o		
	a) $p = 1, q = -1, r = 1$	•	b) $p = 1, q = 1, r = 1$		
	c) $p = -1, q = -1, r = -1$		d) $p = -1, q = -1, r = 1$		
511.	Parsec is a unit of				
	a) Distance	b) Velocity	c) Time	d) Angle	
512.	A student performs an exp	eriment for determination	of $g\left(=\frac{4\pi^2l}{T^2}\right)$, $l\approx 1$ m, and	he commits an error of Δl .	
	For T he takes the time of n oscillations with the stop watch of least count ΔT and he commits a human				
		-	easurement of g will be mo		
	a) $\Delta L = 0.5, \Delta T = 0.1, n = 20$		b) $\Delta L = 0.5, \Delta T = 0.1, n = 50$		
	c) $\Delta L = 0.5, \Delta T = 0.01, n = 20$		d) $\Delta L = 0.5, \Delta T = 0.05, n = 50$		
513.	Dimensional formula of m	agnetic flux is			
	a) $ML^2T^{-2}A^{-1}$	b) $ML^0T^{-2}A^{-2}$	c) $M^0L^{-2}T^{-2}A^{-3}$	d) $ML^2T^{-2}A^3$	
514.	The SI unit of length is the	metre. Suppose we adopt a	a new unit of length which	equal x metre. The area of	
	1 m^2 expressed in terms o	f the new unit has a magnit	tude		
	a) <i>x</i>	b) <i>x</i> ²	c) x^{-1}	d) x^{-2}	
515.		lated to four observables $lpha$	a, b, c and d as follows		
	$A = \frac{a^2 b^3}{c\sqrt{d}}$				
	$A = \frac{1}{c\sqrt{d}}$				

		, <i>c</i> and <i>d</i> are 1%, 3%, 2% and	d 2% respectively. What is the
percentage error i	n the quantity A?		
a) 12%	b) 7%	c) 5%	d) 14%
		_	simple pendulum are 1% and 2%
respectively. Then	the maximum error in the r	neasurement of acceleratior	ı due to gravity is
a) 8%	b) 3%	c) 4%	d) 5%
517. If the acceleration	due to gravity is 10 ms ⁻² ar	nd the units of length and tin	ne are changed in kilometer and
hour respectively,	the numerical value ofaccel	eration is	
a) 360000	b) 72000	c) 36000	d) 129600
518. The square root of	f the product of inductance a	and capacitance has the dime	ension of
a) Length	b) Mass	c) Time	d) No dimension
519. The number of par	rticles given by $n = -D \frac{n_2 - n_2}{n_2}$	$rac{t_1}{t}$ are crossing a unit area pe	rpendicular to x -axis in unit
		cles per unit volume for the	
	the dimensional formula of		varies x_1 and x_2 or x
a) [M ⁰ LT ⁰]	b) $[M^0L^2T^{-4}]$	c) [M ⁰ LT ⁻³]	d) $[M^0L^2T^{-1}]$
, L .	,	apon mass of body, speed of	, ,
-	the expression for centripe		the body and the radius of
<u>-</u>			$m^2 n^2$
a) $F = \frac{mv}{2r^3}$	b) $F = \frac{mv}{r}$	c) $F = \frac{mv^2}{r^2}$	d) $F = \frac{m^{-\nu}}{2r}$
_,	•	ınder gravity through a colu	- ,
		velocity of the ball attains a c	•
			ball m , (ii) η , (iii) r and (iv)
		lowing relations is dimensio	
a) $v_T \propto \frac{1}{\eta r}$	b) $v_T \propto \frac{1}{mg}$	c) $v_T \propto \eta r m g$	d) $v_T \propto \frac{\eta}{\eta}$
522. If $F = 6\pi \eta^a r^b v^c$,			
Where $F = $ viscous	s force	LICATION	
$\eta=$ coefficient of γ	s force viscosity	UCATION	
r = radius of sphe			
v = terminal veloc	city of the body.		
Find the values of	a, b and c .		
a) $a = 1, b = 2, c =$	= 1	b) $a = 1, b = 1, c = 1$	1
c) $a = 2, b = 1, c = 1$	= 1	d) $a = 2, b = 1, c = 3$	2
523. A physical parame	ter a can be determined by	measuring the parameters b	, c, d and e using the relation
$a=b^{\alpha}c^{\beta}/d^{\gamma}e^{\delta}$. If	the maximum errors in the	measurement of b, c, d and	e are b_1 %, c_1 %, d_1 % and e_1 %,
then the maximun	n error in the value of a dete	ermined by the experiment is	5
a) $(b_1 + c_1 + d_1 +$	$e_1)\%$	b) $(b_1 + c_1 - d_1 - e_1)$)%
c) $(\alpha b_1 + \beta c_1 - \gamma c_1)$	$d_1 - \delta e_1)\%$	d) $(\alpha b_1 + \beta c_1 + \gamma d_1)$	$+\delta e_1$)%
524. The frequency f o	f vibration of mass m susper	nded from a spring of spring	constant k is given by
f = c	$m^x k^y$		
Where c is dimens	sionless constant. The values	s of x and y are respectively	
a) 1/2, 1/2	b) -1/2, 1/2	c) 1/2, - 1/2	d) -1/2, -1/2
525. The dimensional f	ormula of universal gas cons	stant is	
a) $[ML^2T^{-2}\theta^{-1}]$	b) $[M^2LT^{-2}\theta]$	c) $[ML^3T^{-1}\theta^{-1}]$	d) None of these
526. Dimensions of $\frac{1}{2}$, where symbols have their	usual meaning, are	
	b) $[L^{-1}T]$	c) $[L^{-2}T^2]$	d) $[L^2T^{-2}]$
a) $[lT^{-1}]$,	, ,	, , ,
In an experiment,	we measure quantities a,b a	and c . Then x is calculated fr	om the formula $x = \frac{ab^2}{c^3}$. The
percentage errors	in a , b , c are $\pm 1\%$, $\pm 3\%$, and	$ m d~\pm 2\%$ respectively. The per	centage error in x can be

a) ±1%	b) ±4%	c) 7%	d) ±13%	
528. The dimensions of potential are the same as that of				
a) Work		b) Electric field per unit of	charge	
c) Work per unit charge		d) Force per unit charge		
529. Which of the following u				
a) Wbm ⁻²	b) Henry (H)	c) Hm ⁻²	d) Weber (Wb)	
530. The dimensional formula				
a) [M ⁰ LT ⁰]	b) [MLT]	c) $[ML^2T^{-1}]$	d) $[M^{-1}L^{-1}T^{-1}]$	
531. If force is proportional to				
a) [ML ⁻¹ T]	b) $[ML^{-1}T^0]$	c) [MLT ⁰]	d) $[M^0LT^{-1}]$	
532. The number of significan				
a) 5 and 6	b) 5 and 7	c) 2 and 7	d) 2 and 6	
_	_		e and the length of the sides respectively 4% and 2%, the	
a) 1%	b) 2%	c) 6%	d) 8%	
534. The frequency of vibrational <i>L</i> is the length. The		- · - · · · -	of segments in the string	
and t is the length. The d a) $[M^0LT^{-1}]$	imensional formula for m w b) $[ML^0T^{-1}]$		$A) [M^0I^0T^0]$	
535. The time dependence of	a physical quantity P is give	$\operatorname{en} \operatorname{by} P = P_0 e^{uv} - at^2 \operatorname{wn}$	ere α is a constant and t is	
time. Then constant α is		b) Dimensionless of T=2		
a) Dimensionless	31	b) Dimensionless of T^{-2} d) Dimensionless of T^2		
c) Dimensionless of P	the messessment of law oth	•	la mandulum ana 10/ and 20/	
536. The percentage errors in	aximum error in the measu			
a) 8%			d) 5%	
537. According to <i>Joule's</i> law	b) 3%	c) 4% $H = I^2 Dt \text{ where } I \text{ is supposed}$		
	measurement of I , R and t a			
measurement of H is	illeasureilleilt of I, K allu t a	ne 5%, 4% and 6% respect	ivery then error in the	
a) $\pm 17\%$	b) ±16%	c) ±19%	d) ±25%	
		,		
538. From the equation $tan\theta$	•	gie of banking θ for a cyclis	t taking a curve (the	
•	l meanings). Then say it is,			
a) Both dimensionally a		b) Neither numerically no	•	
c) Dimensionally correc		d) Numerically correct or	-	
539. If the length of a rectang		2.1 cm and minimum poss	ible measurement by scale	
= 0.1 cm, then the area i			2	
a) 22.0 cm ²	b) ^{22.1} cm ²	c) 22.05 cm ²	d) ^{22 cm²}	
540. According to Newton, th	e viscous force acting betwe	een liquid layers of area A a	and velocity gradient $\Delta v/\Delta z$	
is given by $F = -\eta A \frac{\Delta v}{\Delta x} v$	where η is constant called co	efficient of viscosity. The d	limensions of η are	
		c) $[ML^{-2}T^{-2}]$	d) $[M^0L^0T^0]$	
541. SI unit of intensity of wa		c) [.12 ·]	a) [··· 2 ·]	
a) $Jm^{-2}s^{-1}$	b) $\text{Jm}^{-1}\text{s}^{-2}$	c) W m ⁻²	d) $J m^{-2}$	
542. The value of universal ga	, ,	,	3,	
a) 8.12	b) 0.00812	c) 81.2	d) 0.0812	
543. E, m, I and G denote ene	*	•		
dimensions of $\frac{EI^2}{m^5G^2}$ are		<u> </u>	, ,,	

a) Angle	b) Length	c) Mass	d) Time	
544. The velocity of a body	v is given by the equation $v = \frac{1}{2}$	$\frac{b}{t} + ct^2 + dt^2$		
The dimensional forn	•	·		
a) [M ⁰ LT ⁰]	b) [ML ⁰ T ⁰]	c) [M ⁰ L ⁰ T]	d) [MLT ⁻¹]	
545. If <i>V</i> denotes the pote	ntial difference across the plat	es of a capacitor of capacit	tance C , the dimensions of	
CV ² are				
a) Not expressible in	MLT	b) <i>MLT</i> ⁻²		
c) M^2LT^{-1}		b) MLT^{-2} d) ML^2T^{-2}		
546. The dimensions of po	wer are			
a) $M^1L^2T^{-3}$	b) $M^2L^1T^{-2}$	c) $M^1L^2T^{-1}$	d) $M^1L^1T^{-2}$	
547. Light year is a unit of				
a) Time	b) Mass	c) Distance	d) Energy	
548. The surface tension o	f mercury is 32 dyne cm^{-1} . Its	value in SI units is		
a) 0.032	b) 0.32	c) 3200	d) 32000	
549. Which of the followin	g quantities has not been expr	essed in proper unit		
a) Torque : Newton n	netre	b) Stress : Newton metr	e^{-2}	
c) Modulus of elastici	ty : Newton metre ^{–2}	d) Surface tension : New	rton metre ^{–2}	
550. One femtometer is eq	uivalent to			
a) $10^{15} m$	b) $10^{-15} m$	c) $10^{-12} m$	d) $10^{12} m$	
551. One side of a cubical l	olock is measured with the hel	p of a vernier callipers of v	vernier constant 0.01 cm.	
	o be 1.23 cm. What is the perce			
a) $\frac{1.23}{0.01} \times 100$	b) $\frac{0.01}{1.23} \times 100$	c) $2 \times \frac{0.01}{0.01} \times 100$	d) $3 \times \frac{0.01}{100} \times 100$	
0.01		1.20	1.20	
•	f Earth as 6.64 $ imes$ $10^{24}kg$ and the	•	ms that make up earth as	
•	it), the number of atoms in the	= =		
a) 10 ³⁰	b) 10 ⁴⁰	c) 10 ⁵⁰	d) 10^{60}	
The velocity of transv	verse wave in a string is $v = \sqrt{\frac{1}{r}}$	$rac{T}{m}$, where T is the tension i	n the string and m is mass	
per unit length. If $T=3.0$ kgf, mass of string is 2.5 g and length of string is 1.00m, then the percentage				
error in the measurer	nent of velocity is			
a) 0.5	b) 0.7	c) 2.3	d) 3.6	
554. $Newton/metre^2$ is th	e unit of			
a) Energy	b) Momentum	c) Force	d) Pressure	
555. The unit of magnetic				
a) TJ ⁻¹	b) JT ⁻¹	c) Am ⁻²	d) Am ⁻¹	
556. Dimensional formula				
a) $[MT^{-3}K^{-4}]$	b) $[ML^2T^{-2}K^{-4}]$	c) $[ML^2T^{-2}]$	d) [MT ⁻² L ⁰]	
557. In the relation $x = co$	$s(\omega t + kx)$, the dimensions of			
a) [M ⁰ LT]	b) $[M^0L^{-1}T^0]$	c) $[M^0L^0T^{-1}]$	d) [M ⁰ LT ⁻¹]	
558. <i>newton</i> – <i>second</i> is t	the unit of			
a) Velocity	b) Angular momentum	c) Momentum	d) Energy	
559. Which of the two hav	e same dimensions			
a) Force and strain		b) Force and stress		
c) Angular velocity ar		d) Energy and strain		
	re of a liquid is (80.0 \pm 0.1) 0 C.		ts temperature is	
$(10.0 \pm 0.1)^{0}$ C. The f	all in temperature in degree ce	entigrade is		
a) 70.0	b) 70.0 ± 0.3	c) 70.0 ± 0.2	d) 70.0 ± 0.1	
	nula of magnetic induction <i>B</i> is			
a) [M ⁰ ALT ⁰]	b) [M ⁰ AL ⁻¹ T ⁰]	c) [M ⁰ AL ² T ⁰]	d) $[ML^2T^{-2}A^{-1}]$	
GPLUS EDUCATION	WEB: <u>WWW.GPLUSEDUCATIO</u>	ON.ORG PHONE I	NO: 8583042324 Page 34	

562. Which one of the following is not a unit of young's i	modulus	
a) Nm^{-1} b) Nm^{-2}	c) Dyne cm ⁻²	d) Mega Pascal
563. A student has measured the length of a wire equal t	o 0.04580 m. This value of	length has the number of
significant figures equal to		
a) Five b) Four	c) Six	d) None of these
564. If u_1 and u_2 are the units selected in two systems o	f measurement and n_1 and	n_2 their numerical values,
then		
a) $n_1 u_1 = n_2 u_2$	b) $n_1 u_1 + n_2 u_2 = 0$	
c) $n_1 n_2 = u_1 u_2$	d) $(n_1 + u_1) = (n_2 + u_2)$	
565. Universal time is based on		
a) Rotation of earth on its axis		
b) Oscillations of quartz crystal		
c) Vibrations of cesium atom		
d) Earth's orbital motion around the sun		
566. The power of lens is $P = \frac{1}{f}$, where f is focal length of	of the lens . The dimensions	of power of lens are
a) $[LT^{-2}]$ b) $[M^0L^{-1}T^0]$	c) $[M^0L^0T^0]$	d) None of these
567. If there is a positive error of 50% in the measureme		•
measurement of kinetic energy is	ı	
a) 25% b) 50%	c) 100%	d) 125%
568. Dimensional formula for angular momentum is	,	,
a) ML^2T^{-2} b) ML^2T^{-1}	c) MLT^{-1}	d) $M^0L^2T^{-2}$
569. If the value of the resistance is 10.845Ω and the value	ue of the current is 3.23 A, t	then the potential difference
is 35.02935 V. its value in correct significant figures		
a) 35 V b) 35.0 V	c) 35.03 V	d) 35.029 V
570. Which of the following quantities has the same dim-	ensions as that of energy	
a) Power b) Force	c) Momentum	d) Work
571. Which of the following sets of quantities have same	dimensional formula?	
a) Frequency, angular frequency and angular mome	entum	
b) Surface tension, stress and spring constant		
c) Acceleration, momentum and retardation		
d) Work, energy and torque		
572. Dimensions of strain are		
a) MLT^{-1} b) ML^2T^{-1}	c) MLT^{-2}	d) $M^0L^0T^0$
573. The circular scale of a screw gauge has 50 divisions	and pitch of 0.5 mm. Find t	he diameter of sphere. Main
scale reading is 2.		
ABOOM FE		
T T T T T T T T T T T T T T T T T T T		
ABOUT 2 25 K		
a) 1.2 b) 1.25	c) 2.20	d) 2.25
574. The random error in the arithmetic mean of 100 ob	•	•

mean of 4000 observations would be

a) 4*x*

b) $\frac{1}{4}x$

c) 2x

d) $\frac{1}{2}x$

575. Which of the following quantity is expressed as force per unit area

a) Work

b) Pressure

c) Volume

d) Area

